Cargando…

Supervised enhancer prediction with epigenetic pattern recognition and targeted validation

Enhancers are important noncoding elements, but they have been traditionally hard to characterize experimentally. The development of massively parallel assays allows the characterization of large numbers of enhancers for the first time. Here, we developed a framework using Drosophila STARR-seq to cr...

Descripción completa

Detalles Bibliográficos
Autores principales: Sethi, Anurag, Gu, Mengting, Gumusgoz, Emrah, Chan, Landon, Yan, Koon-Kiu, Rozowsky, Joel, Barozzi, Iros, Afzal, Veena, Akiyama, Jennifer A., Plajzer-Frick, Ingrid, Yan, Chengfei, Novak, Catherine S., Kato, Momoe, Garvin, Tyler H., Pham, Quan, Harrington, Anne, Mannion, Brandon J., Lee, Elizabeth A., Fukuda-Yuzawa, Yoko, Visel, Axel, Dickel, Diane E., Yip, Kevin Y., Sutton, Richard, Pennacchio, Len A., Gerstein, Mark
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8073243/
https://www.ncbi.nlm.nih.gov/pubmed/32737473
http://dx.doi.org/10.1038/s41592-020-0907-8
_version_ 1783684085189705728
author Sethi, Anurag
Gu, Mengting
Gumusgoz, Emrah
Chan, Landon
Yan, Koon-Kiu
Rozowsky, Joel
Barozzi, Iros
Afzal, Veena
Akiyama, Jennifer A.
Plajzer-Frick, Ingrid
Yan, Chengfei
Novak, Catherine S.
Kato, Momoe
Garvin, Tyler H.
Pham, Quan
Harrington, Anne
Mannion, Brandon J.
Lee, Elizabeth A.
Fukuda-Yuzawa, Yoko
Visel, Axel
Dickel, Diane E.
Yip, Kevin Y.
Sutton, Richard
Pennacchio, Len A.
Gerstein, Mark
author_facet Sethi, Anurag
Gu, Mengting
Gumusgoz, Emrah
Chan, Landon
Yan, Koon-Kiu
Rozowsky, Joel
Barozzi, Iros
Afzal, Veena
Akiyama, Jennifer A.
Plajzer-Frick, Ingrid
Yan, Chengfei
Novak, Catherine S.
Kato, Momoe
Garvin, Tyler H.
Pham, Quan
Harrington, Anne
Mannion, Brandon J.
Lee, Elizabeth A.
Fukuda-Yuzawa, Yoko
Visel, Axel
Dickel, Diane E.
Yip, Kevin Y.
Sutton, Richard
Pennacchio, Len A.
Gerstein, Mark
author_sort Sethi, Anurag
collection PubMed
description Enhancers are important noncoding elements, but they have been traditionally hard to characterize experimentally. The development of massively parallel assays allows the characterization of large numbers of enhancers for the first time. Here, we developed a framework using Drosophila STARR-seq to create shape-matching filters based on meta-profiles of epigenetic features. We integrated these features with supervised machine-learning algorithms to predict enhancers. We further demonstrated our model could be transferred to predict enhancers in mammals. We comprehensively validated the predictions using a combination of in vivo and in vitro approaches, involving transgenic assays in mouse and transduction-based reporter assays in human cell lines (153 enhancers in total). The results confirmed our model can accurately predict enhancers in different species without re-parameterization. Finally, we examined the transcription-factor binding patterns at predicted enhancers versus promoters. We demonstrated that these patterns enable the construction of a secondary model effectively discriminating between enhancers and promoters.
format Online
Article
Text
id pubmed-8073243
institution National Center for Biotechnology Information
language English
publishDate 2020
record_format MEDLINE/PubMed
spelling pubmed-80732432021-04-26 Supervised enhancer prediction with epigenetic pattern recognition and targeted validation Sethi, Anurag Gu, Mengting Gumusgoz, Emrah Chan, Landon Yan, Koon-Kiu Rozowsky, Joel Barozzi, Iros Afzal, Veena Akiyama, Jennifer A. Plajzer-Frick, Ingrid Yan, Chengfei Novak, Catherine S. Kato, Momoe Garvin, Tyler H. Pham, Quan Harrington, Anne Mannion, Brandon J. Lee, Elizabeth A. Fukuda-Yuzawa, Yoko Visel, Axel Dickel, Diane E. Yip, Kevin Y. Sutton, Richard Pennacchio, Len A. Gerstein, Mark Nat Methods Article Enhancers are important noncoding elements, but they have been traditionally hard to characterize experimentally. The development of massively parallel assays allows the characterization of large numbers of enhancers for the first time. Here, we developed a framework using Drosophila STARR-seq to create shape-matching filters based on meta-profiles of epigenetic features. We integrated these features with supervised machine-learning algorithms to predict enhancers. We further demonstrated our model could be transferred to predict enhancers in mammals. We comprehensively validated the predictions using a combination of in vivo and in vitro approaches, involving transgenic assays in mouse and transduction-based reporter assays in human cell lines (153 enhancers in total). The results confirmed our model can accurately predict enhancers in different species without re-parameterization. Finally, we examined the transcription-factor binding patterns at predicted enhancers versus promoters. We demonstrated that these patterns enable the construction of a secondary model effectively discriminating between enhancers and promoters. 2020-07-29 2020-08 /pmc/articles/PMC8073243/ /pubmed/32737473 http://dx.doi.org/10.1038/s41592-020-0907-8 Text en http://www.nature.com/authors/editorial_policies/license.html#termsUsers may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Sethi, Anurag
Gu, Mengting
Gumusgoz, Emrah
Chan, Landon
Yan, Koon-Kiu
Rozowsky, Joel
Barozzi, Iros
Afzal, Veena
Akiyama, Jennifer A.
Plajzer-Frick, Ingrid
Yan, Chengfei
Novak, Catherine S.
Kato, Momoe
Garvin, Tyler H.
Pham, Quan
Harrington, Anne
Mannion, Brandon J.
Lee, Elizabeth A.
Fukuda-Yuzawa, Yoko
Visel, Axel
Dickel, Diane E.
Yip, Kevin Y.
Sutton, Richard
Pennacchio, Len A.
Gerstein, Mark
Supervised enhancer prediction with epigenetic pattern recognition and targeted validation
title Supervised enhancer prediction with epigenetic pattern recognition and targeted validation
title_full Supervised enhancer prediction with epigenetic pattern recognition and targeted validation
title_fullStr Supervised enhancer prediction with epigenetic pattern recognition and targeted validation
title_full_unstemmed Supervised enhancer prediction with epigenetic pattern recognition and targeted validation
title_short Supervised enhancer prediction with epigenetic pattern recognition and targeted validation
title_sort supervised enhancer prediction with epigenetic pattern recognition and targeted validation
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8073243/
https://www.ncbi.nlm.nih.gov/pubmed/32737473
http://dx.doi.org/10.1038/s41592-020-0907-8
work_keys_str_mv AT sethianurag supervisedenhancerpredictionwithepigeneticpatternrecognitionandtargetedvalidation
AT gumengting supervisedenhancerpredictionwithepigeneticpatternrecognitionandtargetedvalidation
AT gumusgozemrah supervisedenhancerpredictionwithepigeneticpatternrecognitionandtargetedvalidation
AT chanlandon supervisedenhancerpredictionwithepigeneticpatternrecognitionandtargetedvalidation
AT yankoonkiu supervisedenhancerpredictionwithepigeneticpatternrecognitionandtargetedvalidation
AT rozowskyjoel supervisedenhancerpredictionwithepigeneticpatternrecognitionandtargetedvalidation
AT barozziiros supervisedenhancerpredictionwithepigeneticpatternrecognitionandtargetedvalidation
AT afzalveena supervisedenhancerpredictionwithepigeneticpatternrecognitionandtargetedvalidation
AT akiyamajennifera supervisedenhancerpredictionwithepigeneticpatternrecognitionandtargetedvalidation
AT plajzerfrickingrid supervisedenhancerpredictionwithepigeneticpatternrecognitionandtargetedvalidation
AT yanchengfei supervisedenhancerpredictionwithepigeneticpatternrecognitionandtargetedvalidation
AT novakcatherines supervisedenhancerpredictionwithepigeneticpatternrecognitionandtargetedvalidation
AT katomomoe supervisedenhancerpredictionwithepigeneticpatternrecognitionandtargetedvalidation
AT garvintylerh supervisedenhancerpredictionwithepigeneticpatternrecognitionandtargetedvalidation
AT phamquan supervisedenhancerpredictionwithepigeneticpatternrecognitionandtargetedvalidation
AT harringtonanne supervisedenhancerpredictionwithepigeneticpatternrecognitionandtargetedvalidation
AT mannionbrandonj supervisedenhancerpredictionwithepigeneticpatternrecognitionandtargetedvalidation
AT leeelizabetha supervisedenhancerpredictionwithepigeneticpatternrecognitionandtargetedvalidation
AT fukudayuzawayoko supervisedenhancerpredictionwithepigeneticpatternrecognitionandtargetedvalidation
AT viselaxel supervisedenhancerpredictionwithepigeneticpatternrecognitionandtargetedvalidation
AT dickeldianee supervisedenhancerpredictionwithepigeneticpatternrecognitionandtargetedvalidation
AT yipkeviny supervisedenhancerpredictionwithepigeneticpatternrecognitionandtargetedvalidation
AT suttonrichard supervisedenhancerpredictionwithepigeneticpatternrecognitionandtargetedvalidation
AT pennacchiolena supervisedenhancerpredictionwithepigeneticpatternrecognitionandtargetedvalidation
AT gersteinmark supervisedenhancerpredictionwithepigeneticpatternrecognitionandtargetedvalidation