Cargando…
Supervised enhancer prediction with epigenetic pattern recognition and targeted validation
Enhancers are important noncoding elements, but they have been traditionally hard to characterize experimentally. The development of massively parallel assays allows the characterization of large numbers of enhancers for the first time. Here, we developed a framework using Drosophila STARR-seq to cr...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8073243/ https://www.ncbi.nlm.nih.gov/pubmed/32737473 http://dx.doi.org/10.1038/s41592-020-0907-8 |
_version_ | 1783684085189705728 |
---|---|
author | Sethi, Anurag Gu, Mengting Gumusgoz, Emrah Chan, Landon Yan, Koon-Kiu Rozowsky, Joel Barozzi, Iros Afzal, Veena Akiyama, Jennifer A. Plajzer-Frick, Ingrid Yan, Chengfei Novak, Catherine S. Kato, Momoe Garvin, Tyler H. Pham, Quan Harrington, Anne Mannion, Brandon J. Lee, Elizabeth A. Fukuda-Yuzawa, Yoko Visel, Axel Dickel, Diane E. Yip, Kevin Y. Sutton, Richard Pennacchio, Len A. Gerstein, Mark |
author_facet | Sethi, Anurag Gu, Mengting Gumusgoz, Emrah Chan, Landon Yan, Koon-Kiu Rozowsky, Joel Barozzi, Iros Afzal, Veena Akiyama, Jennifer A. Plajzer-Frick, Ingrid Yan, Chengfei Novak, Catherine S. Kato, Momoe Garvin, Tyler H. Pham, Quan Harrington, Anne Mannion, Brandon J. Lee, Elizabeth A. Fukuda-Yuzawa, Yoko Visel, Axel Dickel, Diane E. Yip, Kevin Y. Sutton, Richard Pennacchio, Len A. Gerstein, Mark |
author_sort | Sethi, Anurag |
collection | PubMed |
description | Enhancers are important noncoding elements, but they have been traditionally hard to characterize experimentally. The development of massively parallel assays allows the characterization of large numbers of enhancers for the first time. Here, we developed a framework using Drosophila STARR-seq to create shape-matching filters based on meta-profiles of epigenetic features. We integrated these features with supervised machine-learning algorithms to predict enhancers. We further demonstrated our model could be transferred to predict enhancers in mammals. We comprehensively validated the predictions using a combination of in vivo and in vitro approaches, involving transgenic assays in mouse and transduction-based reporter assays in human cell lines (153 enhancers in total). The results confirmed our model can accurately predict enhancers in different species without re-parameterization. Finally, we examined the transcription-factor binding patterns at predicted enhancers versus promoters. We demonstrated that these patterns enable the construction of a secondary model effectively discriminating between enhancers and promoters. |
format | Online Article Text |
id | pubmed-8073243 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
record_format | MEDLINE/PubMed |
spelling | pubmed-80732432021-04-26 Supervised enhancer prediction with epigenetic pattern recognition and targeted validation Sethi, Anurag Gu, Mengting Gumusgoz, Emrah Chan, Landon Yan, Koon-Kiu Rozowsky, Joel Barozzi, Iros Afzal, Veena Akiyama, Jennifer A. Plajzer-Frick, Ingrid Yan, Chengfei Novak, Catherine S. Kato, Momoe Garvin, Tyler H. Pham, Quan Harrington, Anne Mannion, Brandon J. Lee, Elizabeth A. Fukuda-Yuzawa, Yoko Visel, Axel Dickel, Diane E. Yip, Kevin Y. Sutton, Richard Pennacchio, Len A. Gerstein, Mark Nat Methods Article Enhancers are important noncoding elements, but they have been traditionally hard to characterize experimentally. The development of massively parallel assays allows the characterization of large numbers of enhancers for the first time. Here, we developed a framework using Drosophila STARR-seq to create shape-matching filters based on meta-profiles of epigenetic features. We integrated these features with supervised machine-learning algorithms to predict enhancers. We further demonstrated our model could be transferred to predict enhancers in mammals. We comprehensively validated the predictions using a combination of in vivo and in vitro approaches, involving transgenic assays in mouse and transduction-based reporter assays in human cell lines (153 enhancers in total). The results confirmed our model can accurately predict enhancers in different species without re-parameterization. Finally, we examined the transcription-factor binding patterns at predicted enhancers versus promoters. We demonstrated that these patterns enable the construction of a secondary model effectively discriminating between enhancers and promoters. 2020-07-29 2020-08 /pmc/articles/PMC8073243/ /pubmed/32737473 http://dx.doi.org/10.1038/s41592-020-0907-8 Text en http://www.nature.com/authors/editorial_policies/license.html#termsUsers may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Sethi, Anurag Gu, Mengting Gumusgoz, Emrah Chan, Landon Yan, Koon-Kiu Rozowsky, Joel Barozzi, Iros Afzal, Veena Akiyama, Jennifer A. Plajzer-Frick, Ingrid Yan, Chengfei Novak, Catherine S. Kato, Momoe Garvin, Tyler H. Pham, Quan Harrington, Anne Mannion, Brandon J. Lee, Elizabeth A. Fukuda-Yuzawa, Yoko Visel, Axel Dickel, Diane E. Yip, Kevin Y. Sutton, Richard Pennacchio, Len A. Gerstein, Mark Supervised enhancer prediction with epigenetic pattern recognition and targeted validation |
title | Supervised enhancer prediction with epigenetic pattern recognition and targeted validation |
title_full | Supervised enhancer prediction with epigenetic pattern recognition and targeted validation |
title_fullStr | Supervised enhancer prediction with epigenetic pattern recognition and targeted validation |
title_full_unstemmed | Supervised enhancer prediction with epigenetic pattern recognition and targeted validation |
title_short | Supervised enhancer prediction with epigenetic pattern recognition and targeted validation |
title_sort | supervised enhancer prediction with epigenetic pattern recognition and targeted validation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8073243/ https://www.ncbi.nlm.nih.gov/pubmed/32737473 http://dx.doi.org/10.1038/s41592-020-0907-8 |
work_keys_str_mv | AT sethianurag supervisedenhancerpredictionwithepigeneticpatternrecognitionandtargetedvalidation AT gumengting supervisedenhancerpredictionwithepigeneticpatternrecognitionandtargetedvalidation AT gumusgozemrah supervisedenhancerpredictionwithepigeneticpatternrecognitionandtargetedvalidation AT chanlandon supervisedenhancerpredictionwithepigeneticpatternrecognitionandtargetedvalidation AT yankoonkiu supervisedenhancerpredictionwithepigeneticpatternrecognitionandtargetedvalidation AT rozowskyjoel supervisedenhancerpredictionwithepigeneticpatternrecognitionandtargetedvalidation AT barozziiros supervisedenhancerpredictionwithepigeneticpatternrecognitionandtargetedvalidation AT afzalveena supervisedenhancerpredictionwithepigeneticpatternrecognitionandtargetedvalidation AT akiyamajennifera supervisedenhancerpredictionwithepigeneticpatternrecognitionandtargetedvalidation AT plajzerfrickingrid supervisedenhancerpredictionwithepigeneticpatternrecognitionandtargetedvalidation AT yanchengfei supervisedenhancerpredictionwithepigeneticpatternrecognitionandtargetedvalidation AT novakcatherines supervisedenhancerpredictionwithepigeneticpatternrecognitionandtargetedvalidation AT katomomoe supervisedenhancerpredictionwithepigeneticpatternrecognitionandtargetedvalidation AT garvintylerh supervisedenhancerpredictionwithepigeneticpatternrecognitionandtargetedvalidation AT phamquan supervisedenhancerpredictionwithepigeneticpatternrecognitionandtargetedvalidation AT harringtonanne supervisedenhancerpredictionwithepigeneticpatternrecognitionandtargetedvalidation AT mannionbrandonj supervisedenhancerpredictionwithepigeneticpatternrecognitionandtargetedvalidation AT leeelizabetha supervisedenhancerpredictionwithepigeneticpatternrecognitionandtargetedvalidation AT fukudayuzawayoko supervisedenhancerpredictionwithepigeneticpatternrecognitionandtargetedvalidation AT viselaxel supervisedenhancerpredictionwithepigeneticpatternrecognitionandtargetedvalidation AT dickeldianee supervisedenhancerpredictionwithepigeneticpatternrecognitionandtargetedvalidation AT yipkeviny supervisedenhancerpredictionwithepigeneticpatternrecognitionandtargetedvalidation AT suttonrichard supervisedenhancerpredictionwithepigeneticpatternrecognitionandtargetedvalidation AT pennacchiolena supervisedenhancerpredictionwithepigeneticpatternrecognitionandtargetedvalidation AT gersteinmark supervisedenhancerpredictionwithepigeneticpatternrecognitionandtargetedvalidation |