Cargando…
Online Adaptive Prediction of Human Motion Intention Based on sEMG
Accurate and reliable motion intention perception and prediction are keys to the exoskeleton control system. In this paper, a motion intention prediction algorithm based on sEMG signal is proposed to predict joint angle and heel strike time in advance. To ensure the accuracy and reliability of the p...
Autores principales: | Ding, Zhen, Yang, Chifu, Wang, Zhipeng, Yin, Xunfeng, Jiang, Feng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8074390/ https://www.ncbi.nlm.nih.gov/pubmed/33924152 http://dx.doi.org/10.3390/s21082882 |
Ejemplares similares
-
A Novel sEMG-Based Gait Phase-Kinematics-Coupled Predictor and Its Interaction With Exoskeletons
por: Wei, Baichun, et al.
Publicado: (2021) -
EOG-sEMG Human Interface for Communication
por: Tamura, Hiroki, et al.
Publicado: (2016) -
sEMG dataset of routine activities
por: Khan, Asad Mansoor, et al.
Publicado: (2020) -
Evaluation of Feature Extraction and Classification for Lower Limb Motion Based on sEMG Signal
por: Qin, Pengjie, et al.
Publicado: (2020) -
Compound motion decoding based on sEMG consisting of gestures, wrist angles, and strength
por: Zhang, Xiaodong, et al.
Publicado: (2022)