Cargando…
Potent synthetic and endogenous ligands for the adopted orphan nuclear receptor Nurr1
Until recently, Nurr1 (NR4A2) was known as an orphan nuclear receptor without a canonical ligand-binding domain, featuring instead a narrow and tight cavity for small molecular ligands to bind. In-depth characterization of its ligand-binding pocket revealed that it is highly dynamic, with its struct...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8080818/ https://www.ncbi.nlm.nih.gov/pubmed/33479411 http://dx.doi.org/10.1038/s12276-021-00555-5 |
Sumario: | Until recently, Nurr1 (NR4A2) was known as an orphan nuclear receptor without a canonical ligand-binding domain, featuring instead a narrow and tight cavity for small molecular ligands to bind. In-depth characterization of its ligand-binding pocket revealed that it is highly dynamic, with its structural conformation changing more than twice on the microsecond-to-millisecond timescale. This observation suggests the possibility that certain ligands are able to squeeze into this narrow space, inducing a conformational change to create an accessible cavity. The cocrystallographic structure of Nurr1 bound to endogenous ligands such as prostaglandin E1/A1 and 5,6-dihydroxyindole contributed to clarifying the crucial roles of Nurr1 and opening new avenues for therapeutic interventions for neurodegenerative and/or inflammatory diseases related to Nurr1. This review introduces novel endogenous and synthetic Nurr1 agonists and discusses their potential effects in Nurr1-related diseases. |
---|