Cargando…

miR-4456/CCL3/CCR5 Pathway in the Pathogenesis of Tight Junction Impairment in Chronic Obstructive Pulmonary Disease

Background: Cigarette smoke exposure (CSE) is a major cause of chronic obstructive pulmonary disease (COPD). The smoke disrupts cell-cell adhesion by inducing epithelial barrier damage to the tight junction (TJ) proteins. Even though the inflammatory mechanism of chemokine (C-C motif) ligand 3 (CCL3...

Descripción completa

Detalles Bibliográficos
Autores principales: Yu, Weiwei, Ye, Ting, Ding, Jie, Huang, Yi, Peng, Yang, Xia, Qin, Cuntai, Zhang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8089484/
https://www.ncbi.nlm.nih.gov/pubmed/33953665
http://dx.doi.org/10.3389/fphar.2021.551839
_version_ 1783687049201582080
author Yu, Weiwei
Ye, Ting
Ding, Jie
Huang, Yi
Peng, Yang
Xia, Qin
Cuntai, Zhang
author_facet Yu, Weiwei
Ye, Ting
Ding, Jie
Huang, Yi
Peng, Yang
Xia, Qin
Cuntai, Zhang
author_sort Yu, Weiwei
collection PubMed
description Background: Cigarette smoke exposure (CSE) is a major cause of chronic obstructive pulmonary disease (COPD). The smoke disrupts cell-cell adhesion by inducing epithelial barrier damage to the tight junction (TJ) proteins. Even though the inflammatory mechanism of chemokine (C-C motif) ligand 3 (CCL3) in COPD has gained increasing attention in the research community, however, the underlying signaling pathway, remains unknown. Objectives: To identify the relationship of CCL3 in the pathogenesis of tight junction impairment in COPD and the pathway through which CSE causes damage to TJ in COPD via CCL3, both in vivo and in vitro. Methods: We screened the inflammatory factors in the peripheral blood mononuclear cells (PBMCs) from healthy controls and patients at each GOLD 1-4 stage of chronic obstructive pulmonary disease. RT-PCR, western blot, and ELISA were used to detect the levels of CCL3, ZO-1, and occludin after Cigarette smoke exposure. Immunofluorescence was applied to examine the impairment of the TJs in 16-HBE and A549 cells. The reverse assay was used to detect the effect of a CCR5 antagonist (DAPTA) in COPD. In the CSE-induced COPD mouse model, H&E staining and lung function tests were used to evaluate the pathological and physical states in each group. Immunofluorescence was used to assess the impairment of TJs in each group. ELISA and RT-PCR were used to examine the mRNA or protein expression of CCL3 or miR-4456 in each group. Results: The in vivo and in vitro results showed that CCL3 expression was increased in COPD compared with healthy controls. CCL3 caused significant injury to TJs through its C-C chemokine receptor type 5 (CCR5), while miR-4456 could suppress the effect of CCL3 on TJs by binding to the 3′-UTR of CCL3. Conclusion: miR-4456/CCL3/CCR5 pathway may be a potential target pathway for the treatment of COPD.
format Online
Article
Text
id pubmed-8089484
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-80894842021-05-04 miR-4456/CCL3/CCR5 Pathway in the Pathogenesis of Tight Junction Impairment in Chronic Obstructive Pulmonary Disease Yu, Weiwei Ye, Ting Ding, Jie Huang, Yi Peng, Yang Xia, Qin Cuntai, Zhang Front Pharmacol Pharmacology Background: Cigarette smoke exposure (CSE) is a major cause of chronic obstructive pulmonary disease (COPD). The smoke disrupts cell-cell adhesion by inducing epithelial barrier damage to the tight junction (TJ) proteins. Even though the inflammatory mechanism of chemokine (C-C motif) ligand 3 (CCL3) in COPD has gained increasing attention in the research community, however, the underlying signaling pathway, remains unknown. Objectives: To identify the relationship of CCL3 in the pathogenesis of tight junction impairment in COPD and the pathway through which CSE causes damage to TJ in COPD via CCL3, both in vivo and in vitro. Methods: We screened the inflammatory factors in the peripheral blood mononuclear cells (PBMCs) from healthy controls and patients at each GOLD 1-4 stage of chronic obstructive pulmonary disease. RT-PCR, western blot, and ELISA were used to detect the levels of CCL3, ZO-1, and occludin after Cigarette smoke exposure. Immunofluorescence was applied to examine the impairment of the TJs in 16-HBE and A549 cells. The reverse assay was used to detect the effect of a CCR5 antagonist (DAPTA) in COPD. In the CSE-induced COPD mouse model, H&E staining and lung function tests were used to evaluate the pathological and physical states in each group. Immunofluorescence was used to assess the impairment of TJs in each group. ELISA and RT-PCR were used to examine the mRNA or protein expression of CCL3 or miR-4456 in each group. Results: The in vivo and in vitro results showed that CCL3 expression was increased in COPD compared with healthy controls. CCL3 caused significant injury to TJs through its C-C chemokine receptor type 5 (CCR5), while miR-4456 could suppress the effect of CCL3 on TJs by binding to the 3′-UTR of CCL3. Conclusion: miR-4456/CCL3/CCR5 pathway may be a potential target pathway for the treatment of COPD. Frontiers Media S.A. 2021-04-19 /pmc/articles/PMC8089484/ /pubmed/33953665 http://dx.doi.org/10.3389/fphar.2021.551839 Text en Copyright © 2021 Yu, Ye, Ding, Huang, Peng, Xia and Cuntai. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Pharmacology
Yu, Weiwei
Ye, Ting
Ding, Jie
Huang, Yi
Peng, Yang
Xia, Qin
Cuntai, Zhang
miR-4456/CCL3/CCR5 Pathway in the Pathogenesis of Tight Junction Impairment in Chronic Obstructive Pulmonary Disease
title miR-4456/CCL3/CCR5 Pathway in the Pathogenesis of Tight Junction Impairment in Chronic Obstructive Pulmonary Disease
title_full miR-4456/CCL3/CCR5 Pathway in the Pathogenesis of Tight Junction Impairment in Chronic Obstructive Pulmonary Disease
title_fullStr miR-4456/CCL3/CCR5 Pathway in the Pathogenesis of Tight Junction Impairment in Chronic Obstructive Pulmonary Disease
title_full_unstemmed miR-4456/CCL3/CCR5 Pathway in the Pathogenesis of Tight Junction Impairment in Chronic Obstructive Pulmonary Disease
title_short miR-4456/CCL3/CCR5 Pathway in the Pathogenesis of Tight Junction Impairment in Chronic Obstructive Pulmonary Disease
title_sort mir-4456/ccl3/ccr5 pathway in the pathogenesis of tight junction impairment in chronic obstructive pulmonary disease
topic Pharmacology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8089484/
https://www.ncbi.nlm.nih.gov/pubmed/33953665
http://dx.doi.org/10.3389/fphar.2021.551839
work_keys_str_mv AT yuweiwei mir4456ccl3ccr5pathwayinthepathogenesisoftightjunctionimpairmentinchronicobstructivepulmonarydisease
AT yeting mir4456ccl3ccr5pathwayinthepathogenesisoftightjunctionimpairmentinchronicobstructivepulmonarydisease
AT dingjie mir4456ccl3ccr5pathwayinthepathogenesisoftightjunctionimpairmentinchronicobstructivepulmonarydisease
AT huangyi mir4456ccl3ccr5pathwayinthepathogenesisoftightjunctionimpairmentinchronicobstructivepulmonarydisease
AT pengyang mir4456ccl3ccr5pathwayinthepathogenesisoftightjunctionimpairmentinchronicobstructivepulmonarydisease
AT xiaqin mir4456ccl3ccr5pathwayinthepathogenesisoftightjunctionimpairmentinchronicobstructivepulmonarydisease
AT cuntaizhang mir4456ccl3ccr5pathwayinthepathogenesisoftightjunctionimpairmentinchronicobstructivepulmonarydisease