Cargando…
Imputing single-cell RNA-seq data by combining graph convolution and autoencoder neural networks
Single-cell RNA sequencing technology promotes the profiling of single-cell transcriptomes at an unprecedented throughput and resolution. However, in scRNA-seq studies, only a low amount of sequenced mRNA in each cell leads to missing detection for a portion of mRNA molecules, i.e. the dropout probl...
Autores principales: | Rao, Jiahua, Zhou, Xiang, Lu, Yutong, Zhao, Huiying, Yang, Yuedong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8091052/ https://www.ncbi.nlm.nih.gov/pubmed/33997678 http://dx.doi.org/10.1016/j.isci.2021.102393 |
Ejemplares similares
-
Single-cell RNA-seq data analysis using graph autoencoders and graph attention networks
por: Feng, Xiang, et al.
Publicado: (2022) -
AutoImpute: Autoencoder based imputation of single-cell RNA-seq data
por: Talwar, Divyanshu, et al.
Publicado: (2018) -
Quantitative evaluation of explainable graph neural networks for molecular property prediction
por: Rao, Jiahua, et al.
Publicado: (2022) -
Sparse Convolutional Denoising Autoencoders for Genotype Imputation
por: Chen, Junjie, et al.
Publicado: (2019) -
AdImpute: An Imputation Method for Single-Cell RNA-Seq Data Based on Semi-Supervised Autoencoders
por: Xu, Li, et al.
Publicado: (2021)