Cargando…

Single-cell sequencing of the small and AT-skewed genome of malaria parasites

Single-cell genomics is a rapidly advancing field; however, most techniques are designed for mammalian cells. We present a single-cell sequencing pipeline for an intracellular parasite, Plasmodium falciparum, with a small genome of extreme base content. Through optimization of a quasi-linear amplifi...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Shiwei, Huckaby, Adam C., Brown, Audrey C., Moore, Christopher C., Burbulis, Ian, McConnell, Michael J., Güler, Jennifer L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8094492/
https://www.ncbi.nlm.nih.gov/pubmed/33947449
http://dx.doi.org/10.1186/s13073-021-00889-9
Descripción
Sumario:Single-cell genomics is a rapidly advancing field; however, most techniques are designed for mammalian cells. We present a single-cell sequencing pipeline for an intracellular parasite, Plasmodium falciparum, with a small genome of extreme base content. Through optimization of a quasi-linear amplification method, we target the parasite genome over contaminants and generate coverage levels allowing detection of minor genetic variants. This work, as well as efforts that build on these findings, will enable detection of parasite heterogeneity contributing to P. falciparum adaptation. Furthermore, this study provides a framework for optimizing single-cell amplification and variant analysis in challenging genomes. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13073-021-00889-9.