Cargando…

PBSIM2: a simulator for long-read sequencers with a novel generative model of quality scores

MOTIVATION: Recent advances in high-throughput long-read sequencers, such as PacBio and Oxford Nanopore sequencers, produce longer reads with more errors than short-read sequencers. In addition to the high error rates of reads, non-uniformity of errors leads to difficulties in various downstream ana...

Descripción completa

Detalles Bibliográficos
Autores principales: Ono, Yukiteru, Asai, Kiyoshi, Hamada, Michiaki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8097687/
https://www.ncbi.nlm.nih.gov/pubmed/32976553
http://dx.doi.org/10.1093/bioinformatics/btaa835
Descripción
Sumario:MOTIVATION: Recent advances in high-throughput long-read sequencers, such as PacBio and Oxford Nanopore sequencers, produce longer reads with more errors than short-read sequencers. In addition to the high error rates of reads, non-uniformity of errors leads to difficulties in various downstream analyses using long reads. Many useful simulators, which characterize long-read error patterns and simulate them, have been developed. However, there is still room for improvement in the simulation of the non-uniformity of errors. RESULTS: To capture characteristics of errors in reads for long-read sequencers, here, we introduce a generative model for quality scores, in which a hidden Markov Model with a latest model selection method, called factorized information criteria, is utilized. We evaluated our developed simulator from various points, indicating that our simulator successfully simulates reads that are consistent with real reads. AVAILABILITY AND IMPLEMENTATION: The source codes of PBSIM2 are freely available from https://github.com/yukiteruono/pbsim2. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.