Cargando…

Induced lineage promiscuity undermines the efficiency of all-trans-retinoid-acid-induced differentiation of acute myeloid leukemia

All-trans retinoid acid (ATRA) can induce terminal differentiation of acute promyelocytic leukemia (APL), also known as the M3 subtype of acute myeloid leukemia (AML). However, non-APL types of AML respond poorly to ATRA-induced differentiation, and the mechanism underlying cell-type-specific resist...

Descripción completa

Detalles Bibliográficos
Autores principales: Tang, Yijia, Tian, Xin, Xu, Zihan, Cai, Junke, Liu, Han, Liu, Nan, Chen, Zhu, Chen, Saijuan, Liu, Feng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8099557/
https://www.ncbi.nlm.nih.gov/pubmed/33997692
http://dx.doi.org/10.1016/j.isci.2021.102410
Descripción
Sumario:All-trans retinoid acid (ATRA) can induce terminal differentiation of acute promyelocytic leukemia (APL), also known as the M3 subtype of acute myeloid leukemia (AML). However, non-APL types of AML respond poorly to ATRA-induced differentiation, and the mechanism underlying cell-type-specific resistance against ATRA remains unclear. Here, we use single-cell transcriptome analysis to compare the differentiation trajectories of two AML cell types during ATRA treatment. We show that in NB4 (APL/AML-M3) cells, ATRA activates canonical myeloid lineage factors—including SPI1, CEBPE, and STAT1—to direct near-normal differentiation toward mature granulocytes. By contrast, in HL60 (AML-M2) cells, ATRA-induced differentiation is incomplete and promiscuous, which is characterized by coinduction of both myelopoiesis and lymphopoiesis gene expression programs, as well as transient activation of cis-regulatory elements associated with myeloid differentiation. Our study suggests that the differentiation inducing capacity of ATRA in certain subtypes of AML may be compromised by therapy-induced lineage promiscuity.