Cargando…
Induced lineage promiscuity undermines the efficiency of all-trans-retinoid-acid-induced differentiation of acute myeloid leukemia
All-trans retinoid acid (ATRA) can induce terminal differentiation of acute promyelocytic leukemia (APL), also known as the M3 subtype of acute myeloid leukemia (AML). However, non-APL types of AML respond poorly to ATRA-induced differentiation, and the mechanism underlying cell-type-specific resist...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8099557/ https://www.ncbi.nlm.nih.gov/pubmed/33997692 http://dx.doi.org/10.1016/j.isci.2021.102410 |
Sumario: | All-trans retinoid acid (ATRA) can induce terminal differentiation of acute promyelocytic leukemia (APL), also known as the M3 subtype of acute myeloid leukemia (AML). However, non-APL types of AML respond poorly to ATRA-induced differentiation, and the mechanism underlying cell-type-specific resistance against ATRA remains unclear. Here, we use single-cell transcriptome analysis to compare the differentiation trajectories of two AML cell types during ATRA treatment. We show that in NB4 (APL/AML-M3) cells, ATRA activates canonical myeloid lineage factors—including SPI1, CEBPE, and STAT1—to direct near-normal differentiation toward mature granulocytes. By contrast, in HL60 (AML-M2) cells, ATRA-induced differentiation is incomplete and promiscuous, which is characterized by coinduction of both myelopoiesis and lymphopoiesis gene expression programs, as well as transient activation of cis-regulatory elements associated with myeloid differentiation. Our study suggests that the differentiation inducing capacity of ATRA in certain subtypes of AML may be compromised by therapy-induced lineage promiscuity. |
---|