Cargando…

Massively parallel and time-resolved RNA sequencing in single cells with scNT-Seq

Single-cell RNA sequencing offers snapshots of whole transcriptomes but obscures the temporal RNA dynamics. Here we present single-cell metabolically labeled new RNA tagging sequencing (scNT-Seq), a method for massively parallel analysis of newly-transcribed and pre-existing mRNAs from the same cell...

Descripción completa

Detalles Bibliográficos
Autores principales: Qiu, Qi, Hu, Peng, Qiu, Xiaojie, Govek, Kiya W., Camara, Pablo G., Wu, Hao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8103797/
https://www.ncbi.nlm.nih.gov/pubmed/32868927
http://dx.doi.org/10.1038/s41592-020-0935-4
Descripción
Sumario:Single-cell RNA sequencing offers snapshots of whole transcriptomes but obscures the temporal RNA dynamics. Here we present single-cell metabolically labeled new RNA tagging sequencing (scNT-Seq), a method for massively parallel analysis of newly-transcribed and pre-existing mRNAs from the same cell. This droplet microfluidics-based method enables high-throughput chemical conversion on barcoded beads, efficiently marking newly-transcribed mRNAs with T-to-C substitutions. Using scNT-Seq, we jointly profiled new and old transcriptomes in ~55,000 single cells. These data revealed time-resolved transcription factor activities and cell state trajectories at single-cell level in response to neuronal activation. We further determined rates of RNA biogenesis and decay to uncover RNA regulatory strategies during stepwise conversion between pluripotent and rare totipotent two-cell-embryo-like (2C-like) stem cell states. Finally, integrating scNT-Seq with genetic perturbation identifies DNA methylcytosine dioxygenases as an epigenetic barrier into 2C-like cell state. Time-resolved single-cell transcriptomic analysis thus opens new lines of inquiry regarding cell-type-specific RNA regulatory mechanisms.