Cargando…
MicroRNA-23a reduces lipopolysaccharide-induced cellular apoptosis and inflammatory cytokine production through Rho-associated kinase 1/sirtuin-1/nuclear factor-kappa B crosstalk
BACKGROUND: MicroRNAs are closely associated with the progression and outcomes of multiple human diseases, including sepsis. In this study, we examined the role of miR-23a in septic injury. METHODS: Lipopolysaccharide (LPS) was used to induce sepsis in a rat model and H9C2 and HK-2 cells. miR-23a ex...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8104237/ https://www.ncbi.nlm.nih.gov/pubmed/33538509 http://dx.doi.org/10.1097/CM9.0000000000001369 |
Sumario: | BACKGROUND: MicroRNAs are closely associated with the progression and outcomes of multiple human diseases, including sepsis. In this study, we examined the role of miR-23a in septic injury. METHODS: Lipopolysaccharide (LPS) was used to induce sepsis in a rat model and H9C2 and HK-2 cells. miR-23a expression was evaluated in rat myocardial and kidney tissues, as well as H9C2 and HK-2 cells. A miR-23a mimic was introduced into cells to identify the role of miR-23a in cell viability, apoptosis, and the secretion of inflammatory cytokines. Furthermore, the effect of Rho-associated kinase 1 (ROCK1), a miR-23a target, on cell damage was evaluated, and molecules involved in the underlying mechanism were identified. RESULTS: In the rat model, miR-23a was poorly expressed in myocardial (sham vs. sepsis 1.00 ± 0.06 vs. 0.27 ± 0.03, P < 0.01) and kidney tissues (sham vs. sepsis 0.27 ± 0.03 vs. 1.00 ± 0.06, P < 0.01). Artificial overexpression of miR-23a resulted in increased proliferative activity (DNA replication rate: Control vs. LPS vs. LPS + Mock vs. LPS + miR-23a: H9C2 cells: 34.13 ± 3.12 vs. 12.94 ± 1.21 vs. 13.31 ± 1.43 vs. 22.94 ± 2.26, P < 0.05; HK-2 cells: 15.17 ± 1.43 vs. 34.52 ± 3.46 vs. 35.19 ± 3.12 vs. 19.87 ± 1.52, P < 0.05), decreased cell apoptosis (Control vs. LPS vs. LPS + Mock vs. LPS + miR-23a: H9C2 cells: 11.39 ± 1.04 vs. 32.57 ± 2.29 vs. 33.08 ± 3.12 vs. 21.63 ± 2.35, P < 0.05; HK-2 cells: 15.17 ± 1.43 vs. 34.52 ± 3.46 vs. 35.19 ± 3.12 vs. 19.87 ± 1.52, P < 0.05), and decreased production of inflammatory cytokines, including interleukin-6 (Control vs. LPS vs. LPS + Mock vs. LPS + miR-23a: H9C2 cells: 59.61 ± 5.14 vs. 113.54 ± 12.30 vs. 116.51 ± 10.69 vs. 87.69 ± 2.97 ng/mL; P < 0.05, F = 12.67, HK-2 cells: 68.12 ± 6.44 vs. 139.65 ± 16.62 vs. 143.51 ± 13.64 vs. 100.82 ± 9.74 ng/mL, P < 0.05, F = 9.83) and tumor necrosis factor-α (Control vs. LPS vs. LPS + Mock vs. LPS + miR-23a: H9C2 cells: 103.20 ± 10.31 vs. 169.67 ± 18.84 vs. 173.61 ± 15.91 vs. 133.36 ± 12.32 ng/mL, P < 0.05, F = 12.67, HK-2 cells: 132.51 ± 13.37 vs. 187.47 ± 16.74 vs. 143.51 ± 13.64 vs. 155.79 ± 15.31 ng/mL, P < 0.05, F = 9.83) in cells. However, ROCK1 was identified as a miR-23a target, and further up-regulation of ROCK1 mitigated the protective function of miR-23a in LPS-treated H9C2 and HK-2 cells. Moreover, ROCK1 suppressed sirtuin-1 (SIRT1) expression to promote the phosphorylation of nuclear factor-kappa B (NF-κB) p65, indicating the possible involvement of this signaling pathway in miR-23a-mediated events. CONCLUSION: Our results indicate that miR-23a could suppress LPS-induced cell damage and inflammatory cytokine secretion by binding to ROCK1, mediated through the potential participation of the SIRT1/NF-κB signaling pathway. |
---|