Cargando…
Discovering multiple types of DNA methylation from bacteria and microbiome using nanopore sequencing
Bacterial DNA methylation occurs at diverse sequence contexts and plays important functional roles in cellular defense and gene regulation. Existing methods for detecting DNA modification from nanopore sequencing data do not effectively support de novo study of unknown bacterial methylomes. In this...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8107137/ https://www.ncbi.nlm.nih.gov/pubmed/33820988 http://dx.doi.org/10.1038/s41592-021-01109-3 |
_version_ | 1783689898675404800 |
---|---|
author | Tourancheau, Alan Mead, Edward A. Zhang, Xue-Song Fang, Gang |
author_facet | Tourancheau, Alan Mead, Edward A. Zhang, Xue-Song Fang, Gang |
author_sort | Tourancheau, Alan |
collection | PubMed |
description | Bacterial DNA methylation occurs at diverse sequence contexts and plays important functional roles in cellular defense and gene regulation. Existing methods for detecting DNA modification from nanopore sequencing data do not effectively support de novo study of unknown bacterial methylomes. In this work, we observed that nanopore sequencing signal displays complex heterogeneity across methylation events of the same type. To enable nanopore sequencing for broadly applicable methylation discovery, we generated a training dataset from an assortment of bacterial species and developed a method, named nanodisco (https://github.com/fanglab/nanodisco), that couples the identification and fine mapping of the three forms of methylation into a multi-label classification framework. We applied it to individual bacteria and mouse gut microbiome for reliable methylation discovery. In addition, we demonstrated the use of DNA methylation for binning metagenomic contigs, associating mobile genetic elements with their host genomes, and identifying misassembled metagenomic contigs. |
format | Online Article Text |
id | pubmed-8107137 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
record_format | MEDLINE/PubMed |
spelling | pubmed-81071372021-10-05 Discovering multiple types of DNA methylation from bacteria and microbiome using nanopore sequencing Tourancheau, Alan Mead, Edward A. Zhang, Xue-Song Fang, Gang Nat Methods Article Bacterial DNA methylation occurs at diverse sequence contexts and plays important functional roles in cellular defense and gene regulation. Existing methods for detecting DNA modification from nanopore sequencing data do not effectively support de novo study of unknown bacterial methylomes. In this work, we observed that nanopore sequencing signal displays complex heterogeneity across methylation events of the same type. To enable nanopore sequencing for broadly applicable methylation discovery, we generated a training dataset from an assortment of bacterial species and developed a method, named nanodisco (https://github.com/fanglab/nanodisco), that couples the identification and fine mapping of the three forms of methylation into a multi-label classification framework. We applied it to individual bacteria and mouse gut microbiome for reliable methylation discovery. In addition, we demonstrated the use of DNA methylation for binning metagenomic contigs, associating mobile genetic elements with their host genomes, and identifying misassembled metagenomic contigs. 2021-04-05 2021-05 /pmc/articles/PMC8107137/ /pubmed/33820988 http://dx.doi.org/10.1038/s41592-021-01109-3 Text en http://www.nature.com/authors/editorial_policies/license.html#termsUsers may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Tourancheau, Alan Mead, Edward A. Zhang, Xue-Song Fang, Gang Discovering multiple types of DNA methylation from bacteria and microbiome using nanopore sequencing |
title | Discovering multiple types of DNA methylation from bacteria and microbiome using nanopore sequencing |
title_full | Discovering multiple types of DNA methylation from bacteria and microbiome using nanopore sequencing |
title_fullStr | Discovering multiple types of DNA methylation from bacteria and microbiome using nanopore sequencing |
title_full_unstemmed | Discovering multiple types of DNA methylation from bacteria and microbiome using nanopore sequencing |
title_short | Discovering multiple types of DNA methylation from bacteria and microbiome using nanopore sequencing |
title_sort | discovering multiple types of dna methylation from bacteria and microbiome using nanopore sequencing |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8107137/ https://www.ncbi.nlm.nih.gov/pubmed/33820988 http://dx.doi.org/10.1038/s41592-021-01109-3 |
work_keys_str_mv | AT tourancheaualan discoveringmultipletypesofdnamethylationfrombacteriaandmicrobiomeusingnanoporesequencing AT meadedwarda discoveringmultipletypesofdnamethylationfrombacteriaandmicrobiomeusingnanoporesequencing AT zhangxuesong discoveringmultipletypesofdnamethylationfrombacteriaandmicrobiomeusingnanoporesequencing AT fanggang discoveringmultipletypesofdnamethylationfrombacteriaandmicrobiomeusingnanoporesequencing |