Cargando…
Generative adversarial network for glioblastoma ensures morphologic variations and improves diagnostic model for isocitrate dehydrogenase mutant type
Generative adversarial network (GAN) creates synthetic images to increase data quantity, but whether GAN ensures meaningful morphologic variations is still unknown. We investigated whether GAN-based synthetic images provide sufficient morphologic variations to improve molecular-based prediction, as...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8110557/ https://www.ncbi.nlm.nih.gov/pubmed/33972663 http://dx.doi.org/10.1038/s41598-021-89477-w |