Cargando…
Generative adversarial network for glioblastoma ensures morphologic variations and improves diagnostic model for isocitrate dehydrogenase mutant type
Generative adversarial network (GAN) creates synthetic images to increase data quantity, but whether GAN ensures meaningful morphologic variations is still unknown. We investigated whether GAN-based synthetic images provide sufficient morphologic variations to improve molecular-based prediction, as...
Autores principales: | Park, Ji Eun, Eun, Dain, Kim, Ho Sung, Lee, Da Hyun, Jang, Ryoung Woo, Kim, Namkug |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8110557/ https://www.ncbi.nlm.nih.gov/pubmed/33972663 http://dx.doi.org/10.1038/s41598-021-89477-w |
Ejemplares similares
-
Wild-type isocitrate dehydrogenase under the spotlight in glioblastoma
por: Alzial, Gabriel, et al.
Publicado: (2021) -
Mutant Isocitrate Dehydrogenase Inhibitors as Targeted Cancer Therapeutics
por: Golub, Danielle, et al.
Publicado: (2019) -
Mechanism for enhanced 5-aminolevulinic acid fluorescence in isocitrate dehydrogenase 1 mutant malignant gliomas
por: Kim, Ja Eun, et al.
Publicado: (2015) -
Mismatch repair protein mutations in isocitrate dehydrogenase (IDH)-mutant astrocytoma and IDH-wild-type glioblastoma
por: Richardson, Timothy E, et al.
Publicado: (2023) -
Importance of Age and Noncontrast-Enhancing Tumor as Biomarkers for Isocitrate Dehydrogenase–Mutant Glioblastoma: A Multicenter Study
por: Uetani, Hiroyuki, et al.
Publicado: (2023)