Cargando…
Selective deletion of connective tissue growth factor attenuates experimentally-induced pulmonary fibrosis and pulmonary arterial hypertension
Connective tissue growth factor (CTGF, CCN2) is a matricellular protein which plays key roles in normal mammalian development and in tissue homeostasis and repair. In pathological conditions, dysregulated CCN2 has been associated with cancer, cardiovascular disease, and tissue fibrosis. In this stud...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8111417/ https://www.ncbi.nlm.nih.gov/pubmed/33662577 http://dx.doi.org/10.1016/j.biocel.2021.105961 |
_version_ | 1783690496579731456 |
---|---|
author | Tam, Angela Y.Y. Horwell, Amy L. Trinder, Sarah L. Khan, Korsa Xu, Shiwen Ong, Voon Denton, Christopher P. Norman, Jill T. Holmes, Alan M. Bou-Gharios, George Abraham, David J. |
author_facet | Tam, Angela Y.Y. Horwell, Amy L. Trinder, Sarah L. Khan, Korsa Xu, Shiwen Ong, Voon Denton, Christopher P. Norman, Jill T. Holmes, Alan M. Bou-Gharios, George Abraham, David J. |
author_sort | Tam, Angela Y.Y. |
collection | PubMed |
description | Connective tissue growth factor (CTGF, CCN2) is a matricellular protein which plays key roles in normal mammalian development and in tissue homeostasis and repair. In pathological conditions, dysregulated CCN2 has been associated with cancer, cardiovascular disease, and tissue fibrosis. In this study, genetic manipulation of the CCN2 gene was employed to investigate the role of CCN2 expression in vitro and in experimentally-induced models of pulmonary fibrosis and pulmonary arterial hypertension (PAH). Knocking down CCN2 using siRNA reduced expression of pro-fibrotic markers (fibronectin p < 0.01, collagen type I p < 0.05, α-SMA p < 0.0001, TIMP-1 p < 0.05 and IL-6 p < 0.05) in TGF-β-treated lung fibroblasts derived from systemic sclerosis patients. In vivo studies were performed in mice using a conditional gene deletion strategy targeting CCN2 in a fibroblast-specific and time-dependent manner in two models of lung disease. CCN2 deletion significantly reduced pulmonary interstitial scarring and fibrosis following bleomycin-instillation, as assessed by fibrotic scores (wildtype bleomycin 3.733 ± 0.2667 vs CCN2 knockout (KO) bleomycin 4.917 ± 0.3436, p < 0.05) and micro-CT. In the well-established chronic hypoxia/Sugen model of pulmonary hypertension, CCN2 gene deletion resulted in a significant decrease in pulmonary vessel remodelling, less right ventricular hypertrophy and a reduction in the haemodynamic measurements characteristic of PAH (RVSP and RV/LV + S were significantly reduced (p < 0.05) in CCN2 KO compared to WT mice in hypoxic/SU5416 conditions). These results support a prominent role for CCN2 in pulmonary fibrosis and in vessel remodelling associated with PAH. Therefore, therapeutics aimed at blocking CCN2 function are likely to benefit several forms of severe lung disease. |
format | Online Article Text |
id | pubmed-8111417 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-81114172021-05-14 Selective deletion of connective tissue growth factor attenuates experimentally-induced pulmonary fibrosis and pulmonary arterial hypertension Tam, Angela Y.Y. Horwell, Amy L. Trinder, Sarah L. Khan, Korsa Xu, Shiwen Ong, Voon Denton, Christopher P. Norman, Jill T. Holmes, Alan M. Bou-Gharios, George Abraham, David J. Int J Biochem Cell Biol Article Connective tissue growth factor (CTGF, CCN2) is a matricellular protein which plays key roles in normal mammalian development and in tissue homeostasis and repair. In pathological conditions, dysregulated CCN2 has been associated with cancer, cardiovascular disease, and tissue fibrosis. In this study, genetic manipulation of the CCN2 gene was employed to investigate the role of CCN2 expression in vitro and in experimentally-induced models of pulmonary fibrosis and pulmonary arterial hypertension (PAH). Knocking down CCN2 using siRNA reduced expression of pro-fibrotic markers (fibronectin p < 0.01, collagen type I p < 0.05, α-SMA p < 0.0001, TIMP-1 p < 0.05 and IL-6 p < 0.05) in TGF-β-treated lung fibroblasts derived from systemic sclerosis patients. In vivo studies were performed in mice using a conditional gene deletion strategy targeting CCN2 in a fibroblast-specific and time-dependent manner in two models of lung disease. CCN2 deletion significantly reduced pulmonary interstitial scarring and fibrosis following bleomycin-instillation, as assessed by fibrotic scores (wildtype bleomycin 3.733 ± 0.2667 vs CCN2 knockout (KO) bleomycin 4.917 ± 0.3436, p < 0.05) and micro-CT. In the well-established chronic hypoxia/Sugen model of pulmonary hypertension, CCN2 gene deletion resulted in a significant decrease in pulmonary vessel remodelling, less right ventricular hypertrophy and a reduction in the haemodynamic measurements characteristic of PAH (RVSP and RV/LV + S were significantly reduced (p < 0.05) in CCN2 KO compared to WT mice in hypoxic/SU5416 conditions). These results support a prominent role for CCN2 in pulmonary fibrosis and in vessel remodelling associated with PAH. Therefore, therapeutics aimed at blocking CCN2 function are likely to benefit several forms of severe lung disease. Elsevier 2021-05 /pmc/articles/PMC8111417/ /pubmed/33662577 http://dx.doi.org/10.1016/j.biocel.2021.105961 Text en © 2021 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Tam, Angela Y.Y. Horwell, Amy L. Trinder, Sarah L. Khan, Korsa Xu, Shiwen Ong, Voon Denton, Christopher P. Norman, Jill T. Holmes, Alan M. Bou-Gharios, George Abraham, David J. Selective deletion of connective tissue growth factor attenuates experimentally-induced pulmonary fibrosis and pulmonary arterial hypertension |
title | Selective deletion of connective tissue growth factor attenuates experimentally-induced pulmonary fibrosis and pulmonary arterial hypertension |
title_full | Selective deletion of connective tissue growth factor attenuates experimentally-induced pulmonary fibrosis and pulmonary arterial hypertension |
title_fullStr | Selective deletion of connective tissue growth factor attenuates experimentally-induced pulmonary fibrosis and pulmonary arterial hypertension |
title_full_unstemmed | Selective deletion of connective tissue growth factor attenuates experimentally-induced pulmonary fibrosis and pulmonary arterial hypertension |
title_short | Selective deletion of connective tissue growth factor attenuates experimentally-induced pulmonary fibrosis and pulmonary arterial hypertension |
title_sort | selective deletion of connective tissue growth factor attenuates experimentally-induced pulmonary fibrosis and pulmonary arterial hypertension |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8111417/ https://www.ncbi.nlm.nih.gov/pubmed/33662577 http://dx.doi.org/10.1016/j.biocel.2021.105961 |
work_keys_str_mv | AT tamangelayy selectivedeletionofconnectivetissuegrowthfactorattenuatesexperimentallyinducedpulmonaryfibrosisandpulmonaryarterialhypertension AT horwellamyl selectivedeletionofconnectivetissuegrowthfactorattenuatesexperimentallyinducedpulmonaryfibrosisandpulmonaryarterialhypertension AT trindersarahl selectivedeletionofconnectivetissuegrowthfactorattenuatesexperimentallyinducedpulmonaryfibrosisandpulmonaryarterialhypertension AT khankorsa selectivedeletionofconnectivetissuegrowthfactorattenuatesexperimentallyinducedpulmonaryfibrosisandpulmonaryarterialhypertension AT xushiwen selectivedeletionofconnectivetissuegrowthfactorattenuatesexperimentallyinducedpulmonaryfibrosisandpulmonaryarterialhypertension AT ongvoon selectivedeletionofconnectivetissuegrowthfactorattenuatesexperimentallyinducedpulmonaryfibrosisandpulmonaryarterialhypertension AT dentonchristopherp selectivedeletionofconnectivetissuegrowthfactorattenuatesexperimentallyinducedpulmonaryfibrosisandpulmonaryarterialhypertension AT normanjillt selectivedeletionofconnectivetissuegrowthfactorattenuatesexperimentallyinducedpulmonaryfibrosisandpulmonaryarterialhypertension AT holmesalanm selectivedeletionofconnectivetissuegrowthfactorattenuatesexperimentallyinducedpulmonaryfibrosisandpulmonaryarterialhypertension AT boughariosgeorge selectivedeletionofconnectivetissuegrowthfactorattenuatesexperimentallyinducedpulmonaryfibrosisandpulmonaryarterialhypertension AT abrahamdavidj selectivedeletionofconnectivetissuegrowthfactorattenuatesexperimentallyinducedpulmonaryfibrosisandpulmonaryarterialhypertension |