Cargando…
The cerebellum-driven social basis of mathematics: implications for one-on-one tutoring of children with mathematics learning disabilities
The purpose of this article is to argue that the patterns of sequence control over kinematics (movements) and dynamics (forces) which evolved in phonological processing in inner speech during the evolution of the social-cognitive capacities behind stone-tool making that led to the emergence of Homo...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8112041/ https://www.ncbi.nlm.nih.gov/pubmed/33971983 http://dx.doi.org/10.1186/s40673-021-00136-2 |
Sumario: | The purpose of this article is to argue that the patterns of sequence control over kinematics (movements) and dynamics (forces) which evolved in phonological processing in inner speech during the evolution of the social-cognitive capacities behind stone-tool making that led to the emergence of Homo sapiens are homologous to the social cerebellum’s capacity to learn patterns of sequence within language that we refer to as mathematics. It is argued that this evolution (1) selected toward a social cognitive cerebellum which arose from the arduous, repetitive precision patterns of knapping (stone shaping) and (2) that over a period of a million-plus years was selected from mentalizing toward the kinematics and dynamics as observed and modeled in Theory of Mind (ToM) of more experienced stone knappers. It is concluded that components of this socially-induced autobiographical knowledge, namely, (1) segmenting events, (2) sequencing events, and (3) sequencing event clusters, all at various levels of abstraction, can inform optimum approaches to one-on-one tutoring of children with mathematical learning disabilities. |
---|