Cargando…
Detecting Group Anomalies in Tera-Scale Multi-Aspect Data via Dense-Subtensor Mining
How can we detect fraudulent lockstep behavior in large-scale multi-aspect data (i.e., tensors)? Can we detect it when data are too large to fit in memory or even on a disk? Past studies have shown that dense subtensors in real-world tensors (e.g., social media, Wikipedia, TCP dumps, etc.) signal an...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8118605/ https://www.ncbi.nlm.nih.gov/pubmed/33997776 http://dx.doi.org/10.3389/fdata.2020.594302 |