Cargando…
Detecting Group Anomalies in Tera-Scale Multi-Aspect Data via Dense-Subtensor Mining
How can we detect fraudulent lockstep behavior in large-scale multi-aspect data (i.e., tensors)? Can we detect it when data are too large to fit in memory or even on a disk? Past studies have shown that dense subtensors in real-world tensors (e.g., social media, Wikipedia, TCP dumps, etc.) signal an...
Autores principales: | Shin, Kijung, Hooi, Bryan, Kim, Jisu, Faloutsos, Christos |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8118605/ https://www.ncbi.nlm.nih.gov/pubmed/33997776 http://dx.doi.org/10.3389/fdata.2020.594302 |
Ejemplares similares
-
Autotuning of Exascale Applications With Anomalies Detection
por: Kimovski, Dragi, et al.
Publicado: (2021) -
Anomaly Detection for the Centralised Elasticsearch Service at CERN
por: Andersson, Jennifer R., et al.
Publicado: (2021) -
Educational Anomaly Analytics: Features, Methods, and Challenges
por: Guo, Teng, et al.
Publicado: (2022) -
BigFiRSt: A Software Program Using Big Data Technique for Mining Simple Sequence Repeats From Large-Scale Sequencing Data
por: Chen, Jinxiang, et al.
Publicado: (2022) -
Editorial: Innovations and Perspectives in Data Mining and Knowledge Discovery
por: Abe, Naoki, et al.
Publicado: (2021)