Cargando…
The Downregulation of ADAM17 Exerts Protective Effects against Cardiac Fibrosis by Regulating Endoplasmic Reticulum Stress and Mitophagy
BACKGROUND: A disintegrin and metalloproteinase 17 (ADAM17) is a transmembrane protein that is widely expressed in various tissues; it mediates the shedding of many membrane-bound molecules, involving cell-cell and cell-matrix interactions. We investigated the role of ADAM17 within mouse cardiac fib...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8118735/ https://www.ncbi.nlm.nih.gov/pubmed/34035876 http://dx.doi.org/10.1155/2021/5572088 |
_version_ | 1783691808943898624 |
---|---|
author | Guan, Chang Zhang, Hai-Feng Wang, Ya-Jing Chen, Zhi-Teng Deng, Bing-Qing Qiu, Qiong Chen, Si-Xu Wu, Mao-Xiong Chen, Yang-Xin Wang, Jing-Feng |
author_facet | Guan, Chang Zhang, Hai-Feng Wang, Ya-Jing Chen, Zhi-Teng Deng, Bing-Qing Qiu, Qiong Chen, Si-Xu Wu, Mao-Xiong Chen, Yang-Xin Wang, Jing-Feng |
author_sort | Guan, Chang |
collection | PubMed |
description | BACKGROUND: A disintegrin and metalloproteinase 17 (ADAM17) is a transmembrane protein that is widely expressed in various tissues; it mediates the shedding of many membrane-bound molecules, involving cell-cell and cell-matrix interactions. We investigated the role of ADAM17 within mouse cardiac fibroblasts (mCFs) in heart fibrosis. METHODS: mCFs were isolated from the hearts of neonatal mice. Effects of ADAM17 on the differentiation of mCFs towards myofibroblasts and their fibrotic behaviors following induction with TGF-β1 were examined. The expression levels of fibrotic proteins, such as collagen I and α-SMA, were assessed by qRT-PCR analysis and western blotting. Cell proliferation and migration were measured using the CCK-8 and wound healing assay. To identify the target gene for ADAM17, the protein levels of the components of endoplasmic reticulum (ER) stress and the PINK1/Parkin pathway were assessed following ADAM17 silencing. The effects of ADAM17 silencing or treatment with thapsigargin, a key stimulator of acute ER stress, on mCFs proliferation, migration, and collagen secretion were also examined. In vivo, we used a mouse model of cardiac fibrosis established by left anterior descending artery ligation; the mice were administered oral gavage with a selective ADAM17 inhibitor (TMI-005) for 4 weeks after the operation. RESULTS: We found that the ADAM17 expression levels were higher in fibrosis heart tissues and TGF-β1-treated mCFs. The ADAM17-specific siRNAs decreased TGF-β1-induced increase in the collagen secretion, proliferation, and migration of mCFs. Knockdown of ADAM17 reduces the activation of mCFs by inhibiting the ATF6 branch of ER stress and further activating mitophagy. Moreover, decreased ADAM17 expression also ameliorated cardiac fibrosis and improved heart function. CONCLUSIONS: This study highlights that mCF ADAM17 expression plays a key role in cardiac fibrosis by regulating ER stress and mitophagy, thereby limiting fibrosis and improving heart function. Therefore, ADAM17 downregulation, within the physiological range, could exert protective effects against cardiac fibrosis. |
format | Online Article Text |
id | pubmed-8118735 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-81187352021-05-24 The Downregulation of ADAM17 Exerts Protective Effects against Cardiac Fibrosis by Regulating Endoplasmic Reticulum Stress and Mitophagy Guan, Chang Zhang, Hai-Feng Wang, Ya-Jing Chen, Zhi-Teng Deng, Bing-Qing Qiu, Qiong Chen, Si-Xu Wu, Mao-Xiong Chen, Yang-Xin Wang, Jing-Feng Oxid Med Cell Longev Research Article BACKGROUND: A disintegrin and metalloproteinase 17 (ADAM17) is a transmembrane protein that is widely expressed in various tissues; it mediates the shedding of many membrane-bound molecules, involving cell-cell and cell-matrix interactions. We investigated the role of ADAM17 within mouse cardiac fibroblasts (mCFs) in heart fibrosis. METHODS: mCFs were isolated from the hearts of neonatal mice. Effects of ADAM17 on the differentiation of mCFs towards myofibroblasts and their fibrotic behaviors following induction with TGF-β1 were examined. The expression levels of fibrotic proteins, such as collagen I and α-SMA, were assessed by qRT-PCR analysis and western blotting. Cell proliferation and migration were measured using the CCK-8 and wound healing assay. To identify the target gene for ADAM17, the protein levels of the components of endoplasmic reticulum (ER) stress and the PINK1/Parkin pathway were assessed following ADAM17 silencing. The effects of ADAM17 silencing or treatment with thapsigargin, a key stimulator of acute ER stress, on mCFs proliferation, migration, and collagen secretion were also examined. In vivo, we used a mouse model of cardiac fibrosis established by left anterior descending artery ligation; the mice were administered oral gavage with a selective ADAM17 inhibitor (TMI-005) for 4 weeks after the operation. RESULTS: We found that the ADAM17 expression levels were higher in fibrosis heart tissues and TGF-β1-treated mCFs. The ADAM17-specific siRNAs decreased TGF-β1-induced increase in the collagen secretion, proliferation, and migration of mCFs. Knockdown of ADAM17 reduces the activation of mCFs by inhibiting the ATF6 branch of ER stress and further activating mitophagy. Moreover, decreased ADAM17 expression also ameliorated cardiac fibrosis and improved heart function. CONCLUSIONS: This study highlights that mCF ADAM17 expression plays a key role in cardiac fibrosis by regulating ER stress and mitophagy, thereby limiting fibrosis and improving heart function. Therefore, ADAM17 downregulation, within the physiological range, could exert protective effects against cardiac fibrosis. Hindawi 2021-05-06 /pmc/articles/PMC8118735/ /pubmed/34035876 http://dx.doi.org/10.1155/2021/5572088 Text en Copyright © 2021 Chang Guan et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Guan, Chang Zhang, Hai-Feng Wang, Ya-Jing Chen, Zhi-Teng Deng, Bing-Qing Qiu, Qiong Chen, Si-Xu Wu, Mao-Xiong Chen, Yang-Xin Wang, Jing-Feng The Downregulation of ADAM17 Exerts Protective Effects against Cardiac Fibrosis by Regulating Endoplasmic Reticulum Stress and Mitophagy |
title | The Downregulation of ADAM17 Exerts Protective Effects against Cardiac Fibrosis by Regulating Endoplasmic Reticulum Stress and Mitophagy |
title_full | The Downregulation of ADAM17 Exerts Protective Effects against Cardiac Fibrosis by Regulating Endoplasmic Reticulum Stress and Mitophagy |
title_fullStr | The Downregulation of ADAM17 Exerts Protective Effects against Cardiac Fibrosis by Regulating Endoplasmic Reticulum Stress and Mitophagy |
title_full_unstemmed | The Downregulation of ADAM17 Exerts Protective Effects against Cardiac Fibrosis by Regulating Endoplasmic Reticulum Stress and Mitophagy |
title_short | The Downregulation of ADAM17 Exerts Protective Effects against Cardiac Fibrosis by Regulating Endoplasmic Reticulum Stress and Mitophagy |
title_sort | downregulation of adam17 exerts protective effects against cardiac fibrosis by regulating endoplasmic reticulum stress and mitophagy |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8118735/ https://www.ncbi.nlm.nih.gov/pubmed/34035876 http://dx.doi.org/10.1155/2021/5572088 |
work_keys_str_mv | AT guanchang thedownregulationofadam17exertsprotectiveeffectsagainstcardiacfibrosisbyregulatingendoplasmicreticulumstressandmitophagy AT zhanghaifeng thedownregulationofadam17exertsprotectiveeffectsagainstcardiacfibrosisbyregulatingendoplasmicreticulumstressandmitophagy AT wangyajing thedownregulationofadam17exertsprotectiveeffectsagainstcardiacfibrosisbyregulatingendoplasmicreticulumstressandmitophagy AT chenzhiteng thedownregulationofadam17exertsprotectiveeffectsagainstcardiacfibrosisbyregulatingendoplasmicreticulumstressandmitophagy AT dengbingqing thedownregulationofadam17exertsprotectiveeffectsagainstcardiacfibrosisbyregulatingendoplasmicreticulumstressandmitophagy AT qiuqiong thedownregulationofadam17exertsprotectiveeffectsagainstcardiacfibrosisbyregulatingendoplasmicreticulumstressandmitophagy AT chensixu thedownregulationofadam17exertsprotectiveeffectsagainstcardiacfibrosisbyregulatingendoplasmicreticulumstressandmitophagy AT wumaoxiong thedownregulationofadam17exertsprotectiveeffectsagainstcardiacfibrosisbyregulatingendoplasmicreticulumstressandmitophagy AT chenyangxin thedownregulationofadam17exertsprotectiveeffectsagainstcardiacfibrosisbyregulatingendoplasmicreticulumstressandmitophagy AT wangjingfeng thedownregulationofadam17exertsprotectiveeffectsagainstcardiacfibrosisbyregulatingendoplasmicreticulumstressandmitophagy AT guanchang downregulationofadam17exertsprotectiveeffectsagainstcardiacfibrosisbyregulatingendoplasmicreticulumstressandmitophagy AT zhanghaifeng downregulationofadam17exertsprotectiveeffectsagainstcardiacfibrosisbyregulatingendoplasmicreticulumstressandmitophagy AT wangyajing downregulationofadam17exertsprotectiveeffectsagainstcardiacfibrosisbyregulatingendoplasmicreticulumstressandmitophagy AT chenzhiteng downregulationofadam17exertsprotectiveeffectsagainstcardiacfibrosisbyregulatingendoplasmicreticulumstressandmitophagy AT dengbingqing downregulationofadam17exertsprotectiveeffectsagainstcardiacfibrosisbyregulatingendoplasmicreticulumstressandmitophagy AT qiuqiong downregulationofadam17exertsprotectiveeffectsagainstcardiacfibrosisbyregulatingendoplasmicreticulumstressandmitophagy AT chensixu downregulationofadam17exertsprotectiveeffectsagainstcardiacfibrosisbyregulatingendoplasmicreticulumstressandmitophagy AT wumaoxiong downregulationofadam17exertsprotectiveeffectsagainstcardiacfibrosisbyregulatingendoplasmicreticulumstressandmitophagy AT chenyangxin downregulationofadam17exertsprotectiveeffectsagainstcardiacfibrosisbyregulatingendoplasmicreticulumstressandmitophagy AT wangjingfeng downregulationofadam17exertsprotectiveeffectsagainstcardiacfibrosisbyregulatingendoplasmicreticulumstressandmitophagy |