Cargando…

Effect of oxymatrine on liver gluconeogenesis is associated with the regulation of PEPCK and G6Pase expression and AKT phosphorylation

An increase in liver gluconeogenesis is an important pathological phenomenon in type 2 diabetes mellitus (T2DM) and oxymatrine is an effective natural drug used for T2DM treatment. The present study aimed to explore the effect of oxymatrine on gluconeogenesis and elucidate the underlying mechanism....

Descripción completa

Detalles Bibliográficos
Autores principales: Zhu, Yu-Xian, Hu, Hai-Qing, Zuo, Mei-Ling, Mao, Li, Song, Gui-Lin, Li, Tao-Ming, Dong, Li-Chen, Yang, Zhong-Bao, Ali Sheikh, Md Sayed
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8120346/
https://www.ncbi.nlm.nih.gov/pubmed/34007449
http://dx.doi.org/10.3892/br.2021.1432
_version_ 1783692050898616320
author Zhu, Yu-Xian
Hu, Hai-Qing
Zuo, Mei-Ling
Mao, Li
Song, Gui-Lin
Li, Tao-Ming
Dong, Li-Chen
Yang, Zhong-Bao
Ali Sheikh, Md Sayed
author_facet Zhu, Yu-Xian
Hu, Hai-Qing
Zuo, Mei-Ling
Mao, Li
Song, Gui-Lin
Li, Tao-Ming
Dong, Li-Chen
Yang, Zhong-Bao
Ali Sheikh, Md Sayed
author_sort Zhu, Yu-Xian
collection PubMed
description An increase in liver gluconeogenesis is an important pathological phenomenon in type 2 diabetes mellitus (T2DM) and oxymatrine is an effective natural drug used for T2DM treatment. The present study aimed to explore the effect of oxymatrine on gluconeogenesis and elucidate the underlying mechanism. Male Sprague-Dawley rats were treated with a high-fat diet and streptozotocin for 4 weeks to induce T2DM, and HepG2 cells were treated with 55 mM glucose to simulate T2DM in vitro. T2DM rats were treated with oxymatrine (10 or 20 mg/kg weight) or metformin for 4 weeks, and HepG2 cells were treated with oxymatrine (0.1 or 1 µM), metformin (0.1 µM), or oxymatrine combined with MK-2206 (AKT inhibitor) for 24 h. Fasting blood glucose and insulin sensitivity of rats were measured to evaluate insulin resistance. Glucose production and uptake ability were measured to evaluate gluconeogenesis in HepG2 cells, and the expression of related genes was detected to explore the molecular mechanism. Additionally, the body weight, liver weight and liver index were measured and hematoxylin and eosin staining was performed to evaluate the effects of the disease. The fasting glucose levels of T2DM rats was 16.5 mmol/l, whereas in the control rats, it was 6.1 mmol/l. Decreased insulin sensitivity (K-value, 0.2), body weight loss (weight, 300 g), liver weight gain, liver index increase (value, 48) and morphological changes were observed in T2DM rats, accompanied by reduced AKT phosphorylation, and upregulated expression of phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase). High-glucose treatment significantly increased glucose production and decreased glucose uptake in HepG2 cells, concomitant with a decrease in AKT phosphorylation and increase of PEPCK and G6Pase expression. In vivo, oxymatrine dose-dependently increased the sensitivity of T2DM rats to insulin, increased AKT phosphorylation and decreased PEPCK and G6Pase expression in the liver, and reversed the liver morphological changes. In vitro, oxymatrine dose-dependently increased AKT phosphorylation and glucose uptake of HepG2 cells subjected to high-glucose treatment, which was accompanied by inhibition of the expression of the gluconeogenesis-related genes, PEPCK and G6Pase. MK-2206 significantly inhibited the protective effects of oxymatrine in high-glucose-treated cells. These data indicated that oxymatrine can effectively prevent insulin resistance and gluconeogenesis, and its mechanism may be at least partly associated with the regulation of PEPCK and G6Pase expression and AKT phosphorylation in the liver.
format Online
Article
Text
id pubmed-8120346
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher D.A. Spandidos
record_format MEDLINE/PubMed
spelling pubmed-81203462021-05-17 Effect of oxymatrine on liver gluconeogenesis is associated with the regulation of PEPCK and G6Pase expression and AKT phosphorylation Zhu, Yu-Xian Hu, Hai-Qing Zuo, Mei-Ling Mao, Li Song, Gui-Lin Li, Tao-Ming Dong, Li-Chen Yang, Zhong-Bao Ali Sheikh, Md Sayed Biomed Rep Articles An increase in liver gluconeogenesis is an important pathological phenomenon in type 2 diabetes mellitus (T2DM) and oxymatrine is an effective natural drug used for T2DM treatment. The present study aimed to explore the effect of oxymatrine on gluconeogenesis and elucidate the underlying mechanism. Male Sprague-Dawley rats were treated with a high-fat diet and streptozotocin for 4 weeks to induce T2DM, and HepG2 cells were treated with 55 mM glucose to simulate T2DM in vitro. T2DM rats were treated with oxymatrine (10 or 20 mg/kg weight) or metformin for 4 weeks, and HepG2 cells were treated with oxymatrine (0.1 or 1 µM), metformin (0.1 µM), or oxymatrine combined with MK-2206 (AKT inhibitor) for 24 h. Fasting blood glucose and insulin sensitivity of rats were measured to evaluate insulin resistance. Glucose production and uptake ability were measured to evaluate gluconeogenesis in HepG2 cells, and the expression of related genes was detected to explore the molecular mechanism. Additionally, the body weight, liver weight and liver index were measured and hematoxylin and eosin staining was performed to evaluate the effects of the disease. The fasting glucose levels of T2DM rats was 16.5 mmol/l, whereas in the control rats, it was 6.1 mmol/l. Decreased insulin sensitivity (K-value, 0.2), body weight loss (weight, 300 g), liver weight gain, liver index increase (value, 48) and morphological changes were observed in T2DM rats, accompanied by reduced AKT phosphorylation, and upregulated expression of phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase). High-glucose treatment significantly increased glucose production and decreased glucose uptake in HepG2 cells, concomitant with a decrease in AKT phosphorylation and increase of PEPCK and G6Pase expression. In vivo, oxymatrine dose-dependently increased the sensitivity of T2DM rats to insulin, increased AKT phosphorylation and decreased PEPCK and G6Pase expression in the liver, and reversed the liver morphological changes. In vitro, oxymatrine dose-dependently increased AKT phosphorylation and glucose uptake of HepG2 cells subjected to high-glucose treatment, which was accompanied by inhibition of the expression of the gluconeogenesis-related genes, PEPCK and G6Pase. MK-2206 significantly inhibited the protective effects of oxymatrine in high-glucose-treated cells. These data indicated that oxymatrine can effectively prevent insulin resistance and gluconeogenesis, and its mechanism may be at least partly associated with the regulation of PEPCK and G6Pase expression and AKT phosphorylation in the liver. D.A. Spandidos 2021-07 2021-04-27 /pmc/articles/PMC8120346/ /pubmed/34007449 http://dx.doi.org/10.3892/br.2021.1432 Text en Copyright: © Zhu et al. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
spellingShingle Articles
Zhu, Yu-Xian
Hu, Hai-Qing
Zuo, Mei-Ling
Mao, Li
Song, Gui-Lin
Li, Tao-Ming
Dong, Li-Chen
Yang, Zhong-Bao
Ali Sheikh, Md Sayed
Effect of oxymatrine on liver gluconeogenesis is associated with the regulation of PEPCK and G6Pase expression and AKT phosphorylation
title Effect of oxymatrine on liver gluconeogenesis is associated with the regulation of PEPCK and G6Pase expression and AKT phosphorylation
title_full Effect of oxymatrine on liver gluconeogenesis is associated with the regulation of PEPCK and G6Pase expression and AKT phosphorylation
title_fullStr Effect of oxymatrine on liver gluconeogenesis is associated with the regulation of PEPCK and G6Pase expression and AKT phosphorylation
title_full_unstemmed Effect of oxymatrine on liver gluconeogenesis is associated with the regulation of PEPCK and G6Pase expression and AKT phosphorylation
title_short Effect of oxymatrine on liver gluconeogenesis is associated with the regulation of PEPCK and G6Pase expression and AKT phosphorylation
title_sort effect of oxymatrine on liver gluconeogenesis is associated with the regulation of pepck and g6pase expression and akt phosphorylation
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8120346/
https://www.ncbi.nlm.nih.gov/pubmed/34007449
http://dx.doi.org/10.3892/br.2021.1432
work_keys_str_mv AT zhuyuxian effectofoxymatrineonlivergluconeogenesisisassociatedwiththeregulationofpepckandg6paseexpressionandaktphosphorylation
AT huhaiqing effectofoxymatrineonlivergluconeogenesisisassociatedwiththeregulationofpepckandg6paseexpressionandaktphosphorylation
AT zuomeiling effectofoxymatrineonlivergluconeogenesisisassociatedwiththeregulationofpepckandg6paseexpressionandaktphosphorylation
AT maoli effectofoxymatrineonlivergluconeogenesisisassociatedwiththeregulationofpepckandg6paseexpressionandaktphosphorylation
AT songguilin effectofoxymatrineonlivergluconeogenesisisassociatedwiththeregulationofpepckandg6paseexpressionandaktphosphorylation
AT litaoming effectofoxymatrineonlivergluconeogenesisisassociatedwiththeregulationofpepckandg6paseexpressionandaktphosphorylation
AT donglichen effectofoxymatrineonlivergluconeogenesisisassociatedwiththeregulationofpepckandg6paseexpressionandaktphosphorylation
AT yangzhongbao effectofoxymatrineonlivergluconeogenesisisassociatedwiththeregulationofpepckandg6paseexpressionandaktphosphorylation
AT alisheikhmdsayed effectofoxymatrineonlivergluconeogenesisisassociatedwiththeregulationofpepckandg6paseexpressionandaktphosphorylation