Cargando…
HCMB: A stable and efficient algorithm for processing the normalization of highly sparse Hi-C contact data
The high-throughput genome-wide chromosome conformation capture (Hi-C) method has recently become an important tool to study chromosomal interactions where one can extract meaningful biological information including P(s) curve, topologically associated domains, A/B compartments, and other biological...
Autores principales: | Wu, Honglong, Wang, Xuebin, Chu, Mengtian, Li, Dongfang, Cheng, Lixin, Zhou, Ke |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8120939/ https://www.ncbi.nlm.nih.gov/pubmed/34025950 http://dx.doi.org/10.1016/j.csbj.2021.04.064 |
Ejemplares similares
-
Hi-Corrector: a fast, scalable and memory-efficient package for normalizing large-scale Hi-C data
por: Li, Wenyuan, et al.
Publicado: (2015) -
HiCRep.py: fast comparison of Hi-C contact matrices in Python
por: Lin, Dejun, et al.
Publicado: (2021) -
HiCEnterprise: identifying long range chromosomal contacts in Hi-C data
por: Kranas, Hanna, et al.
Publicado: (2021) -
HiCmapTools: a tool to access HiC contact maps
por: Chang, Jia-Ming, et al.
Publicado: (2022) -
Tissue-aware RNA-Seq processing and normalization for heterogeneous and sparse data
por: Paulson, Joseph N., et al.
Publicado: (2017)