Cargando…
The formin inhibitor SMIFH2 inhibits members of the myosin superfamily
The small molecular inhibitor of formin FH2 domains, SMIFH2, is widely used in cell biological studies. It inhibits formin-driven actin polymerization in vitro, but not polymerization of pure actin. It is active against several types of formin from different species. Here, we found that SMIFH2 inhib...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Company of Biologists Ltd
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8121067/ https://www.ncbi.nlm.nih.gov/pubmed/33589498 http://dx.doi.org/10.1242/jcs.253708 |
Sumario: | The small molecular inhibitor of formin FH2 domains, SMIFH2, is widely used in cell biological studies. It inhibits formin-driven actin polymerization in vitro, but not polymerization of pure actin. It is active against several types of formin from different species. Here, we found that SMIFH2 inhibits retrograde flow of myosin 2 filaments and contraction of stress fibers. We further checked the effect of SMIFH2 on non-muscle myosin 2A and skeletal muscle myosin 2 in vitro, and found that SMIFH2 inhibits activity of myosin ATPase and the ability to translocate actin filaments in the gliding actin in vitro motility assay. Inhibition of non-muscle myosin 2A in vitro required a higher concentration of SMIFH2 compared with that needed to inhibit retrograde flow and stress fiber contraction in cells. We also found that SMIFH2 inhibits several other non-muscle myosin types, including bovine myosin 10, Drosophila myosin 7a and Drosophila myosin 5, more efficiently than it inhibits formins. These off-target inhibitions demand additional careful analysis in each case when solely SMIFH2 is used to probe formin functions. This article has an associated First Person interview with Yukako Nishimura, joint first author of the paper. |
---|