Cargando…
Therapeutic potential of targeting membrane-spanning proteoglycan SDC4 in hepatocellular carcinoma
Syndecan-4 (SDC4) functions as a major endogenous membrane-associated receptor and widely regulates cytoskeleton, cell adhesion, and cell migration in human tumorigenesis and development, which represents a charming anti-cancer therapeutic target. Here, SDC4 was identified as a direct cellular targe...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8121893/ https://www.ncbi.nlm.nih.gov/pubmed/33990545 http://dx.doi.org/10.1038/s41419-021-03780-y |
Sumario: | Syndecan-4 (SDC4) functions as a major endogenous membrane-associated receptor and widely regulates cytoskeleton, cell adhesion, and cell migration in human tumorigenesis and development, which represents a charming anti-cancer therapeutic target. Here, SDC4 was identified as a direct cellular target of small-molecule bufalin with anti-hepatocellular carcinoma (HCC) activity. Mechanism studies revealed that bufalin directly bond to SDC4 and selectively increased SDC4 interaction with substrate protein DEAD-box helicase 23 (DDX23) to induce HCC genomic instability. Meanwhile, pharmacological promotion of SDC4/DDX23 complex formation also inactivated matrix metalloproteinases (MMPs) and augmented p38/JNK MAPKs phosphorylation, which are highly associated with HCC proliferation and migration. Notably, specific knockdown of SDC4 or DDX23 markedly abolished bufalin-dependent inhibition of HCC proliferation and migration, indicating SDC4/DDX23 signaling axis is highly involved in the HCC process. Our results indicate that membrane-spanning proteoglycan SDC4 is a promising druggable target for HCC, and pharmacological regulation of SDC4/DDX23 signaling axis with small-molecule holds great potential to benefit HCC patients. |
---|