Cargando…
Identification of Novel Inhibitors of Escherichia coli DNA Ligase (LigA)
Present in all organisms, DNA ligases catalyse the formation of a phosphodiester bond between a 3′ hydroxyl and a 5′ phosphate, a reaction that is essential for maintaining genome integrity during replication and repair. Eubacterial DNA ligases use NAD(+) as a cofactor and possess low sequence and s...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8123306/ https://www.ncbi.nlm.nih.gov/pubmed/33923034 http://dx.doi.org/10.3390/molecules26092508 |
_version_ | 1783692865079083008 |
---|---|
author | Alomari, Arqam Gowland, Robert Southwood, Callum Barrow, Jak Bentley, Zoe Calvin-Nelson, Jashel Kaminski, Alice LeFevre, Matthew Callaghan, Anastasia J. Vincent, Helen A. Gowers, Darren M. |
author_facet | Alomari, Arqam Gowland, Robert Southwood, Callum Barrow, Jak Bentley, Zoe Calvin-Nelson, Jashel Kaminski, Alice LeFevre, Matthew Callaghan, Anastasia J. Vincent, Helen A. Gowers, Darren M. |
author_sort | Alomari, Arqam |
collection | PubMed |
description | Present in all organisms, DNA ligases catalyse the formation of a phosphodiester bond between a 3′ hydroxyl and a 5′ phosphate, a reaction that is essential for maintaining genome integrity during replication and repair. Eubacterial DNA ligases use NAD(+) as a cofactor and possess low sequence and structural homology relative to eukaryotic DNA ligases which use ATP as a cofactor. These key differences enable specific targeting of bacterial DNA ligases as an antibacterial strategy. In this study, four small molecule accessible sites within functionally important regions of Escherichia coli ligase (EC-LigA) were identified using in silico methods. Molecular docking was then used to screen for small molecules predicted to bind to these sites. Eight candidate inhibitors were then screened for inhibitory activity in an in vitro ligase assay. Five of these (geneticin, chlorhexidine, glutathione (reduced), imidazolidinyl urea and 2-(aminomethyl)imidazole) showed dose-dependent inhibition of EC-LigA with half maximal inhibitory concentrations (IC(50)) in the micromolar to millimolar range (11–2600 µM). Two (geneticin and chlorhexidine) were predicted to bind to a region of EC-LigA that has not been directly investigated previously, raising the possibility that there may be amino acids within this region that are important for EC-LigA activity or that the function of essential residues proximal to this region are impacted by inhibitor interactions with this region. We anticipate that the identified small molecule binding sites and inhibitors could be pursued as part of an antibacterial strategy targeting bacterial DNA ligases. |
format | Online Article Text |
id | pubmed-8123306 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-81233062021-05-16 Identification of Novel Inhibitors of Escherichia coli DNA Ligase (LigA) Alomari, Arqam Gowland, Robert Southwood, Callum Barrow, Jak Bentley, Zoe Calvin-Nelson, Jashel Kaminski, Alice LeFevre, Matthew Callaghan, Anastasia J. Vincent, Helen A. Gowers, Darren M. Molecules Article Present in all organisms, DNA ligases catalyse the formation of a phosphodiester bond between a 3′ hydroxyl and a 5′ phosphate, a reaction that is essential for maintaining genome integrity during replication and repair. Eubacterial DNA ligases use NAD(+) as a cofactor and possess low sequence and structural homology relative to eukaryotic DNA ligases which use ATP as a cofactor. These key differences enable specific targeting of bacterial DNA ligases as an antibacterial strategy. In this study, four small molecule accessible sites within functionally important regions of Escherichia coli ligase (EC-LigA) were identified using in silico methods. Molecular docking was then used to screen for small molecules predicted to bind to these sites. Eight candidate inhibitors were then screened for inhibitory activity in an in vitro ligase assay. Five of these (geneticin, chlorhexidine, glutathione (reduced), imidazolidinyl urea and 2-(aminomethyl)imidazole) showed dose-dependent inhibition of EC-LigA with half maximal inhibitory concentrations (IC(50)) in the micromolar to millimolar range (11–2600 µM). Two (geneticin and chlorhexidine) were predicted to bind to a region of EC-LigA that has not been directly investigated previously, raising the possibility that there may be amino acids within this region that are important for EC-LigA activity or that the function of essential residues proximal to this region are impacted by inhibitor interactions with this region. We anticipate that the identified small molecule binding sites and inhibitors could be pursued as part of an antibacterial strategy targeting bacterial DNA ligases. MDPI 2021-04-25 /pmc/articles/PMC8123306/ /pubmed/33923034 http://dx.doi.org/10.3390/molecules26092508 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Alomari, Arqam Gowland, Robert Southwood, Callum Barrow, Jak Bentley, Zoe Calvin-Nelson, Jashel Kaminski, Alice LeFevre, Matthew Callaghan, Anastasia J. Vincent, Helen A. Gowers, Darren M. Identification of Novel Inhibitors of Escherichia coli DNA Ligase (LigA) |
title | Identification of Novel Inhibitors of Escherichia coli DNA Ligase (LigA) |
title_full | Identification of Novel Inhibitors of Escherichia coli DNA Ligase (LigA) |
title_fullStr | Identification of Novel Inhibitors of Escherichia coli DNA Ligase (LigA) |
title_full_unstemmed | Identification of Novel Inhibitors of Escherichia coli DNA Ligase (LigA) |
title_short | Identification of Novel Inhibitors of Escherichia coli DNA Ligase (LigA) |
title_sort | identification of novel inhibitors of escherichia coli dna ligase (liga) |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8123306/ https://www.ncbi.nlm.nih.gov/pubmed/33923034 http://dx.doi.org/10.3390/molecules26092508 |
work_keys_str_mv | AT alomariarqam identificationofnovelinhibitorsofescherichiacolidnaligaseliga AT gowlandrobert identificationofnovelinhibitorsofescherichiacolidnaligaseliga AT southwoodcallum identificationofnovelinhibitorsofescherichiacolidnaligaseliga AT barrowjak identificationofnovelinhibitorsofescherichiacolidnaligaseliga AT bentleyzoe identificationofnovelinhibitorsofescherichiacolidnaligaseliga AT calvinnelsonjashel identificationofnovelinhibitorsofescherichiacolidnaligaseliga AT kaminskialice identificationofnovelinhibitorsofescherichiacolidnaligaseliga AT lefevrematthew identificationofnovelinhibitorsofescherichiacolidnaligaseliga AT callaghananastasiaj identificationofnovelinhibitorsofescherichiacolidnaligaseliga AT vincenthelena identificationofnovelinhibitorsofescherichiacolidnaligaseliga AT gowersdarrenm identificationofnovelinhibitorsofescherichiacolidnaligaseliga |