Cargando…
Investigation of Photonic-Crystal-Structured p-GaN Nanorods Fabricated by Polystyrene Nanosphere Lithography Method to Improve the Light Extraction Efficiency of InGaN/GaN Green Light-Emitting Diodes
We fabricated the photonic-crystal-structured p-GaN (PC-structured p-GaN) nanorods using the modified polystyrene nanosphere (PS NS) lithography method for InGaN/GaN green light-emitting diodes (LEDs) to enhance the light extraction efficiency (LEE). A modified PS NS lithography method including two...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8123327/ https://www.ncbi.nlm.nih.gov/pubmed/33922982 http://dx.doi.org/10.3390/ma14092200 |
_version_ | 1783692871505805312 |
---|---|
author | Lei, Po-Hsun Yang, Po-Chun Huang, Po-Chun |
author_facet | Lei, Po-Hsun Yang, Po-Chun Huang, Po-Chun |
author_sort | Lei, Po-Hsun |
collection | PubMed |
description | We fabricated the photonic-crystal-structured p-GaN (PC-structured p-GaN) nanorods using the modified polystyrene nanosphere (PS NS) lithography method for InGaN/GaN green light-emitting diodes (LEDs) to enhance the light extraction efficiency (LEE). A modified PS NS lithography method including two-times spin-coating processes and the post-spin-coating heating treatment was used to obtain a self-assembly close-packed PS NS array of monolayer as a mask and then a partially dry etching process was applied to PS NS, SiO(2), and p-GaN to form PC-structured p-GaN nanorods on the InGaN/GaN green LEDs. The light output intensity and LEE of InGaN/GaN green LEDs with the PC-structured p-GaN nanorods depend on the period, diameter, and height of PC-structured p-GaN nanorods. RSoft FullWAVE software based on the three-dimension finite-difference time-domain (FDTD) algorithm was used to calculate the LEE of InGaN/GaN green LEDs with PC-structured p-GaN nanorods of the varied period, diameter, and height. The optimal period, diameter, and height of PC-structured p-GaN nanorods are 150, 350, and 110 nm. The InGaN/GaN green LEDs with optimal PC-structured p-GaN nanorods exhibit an enhancement of 41% of emission intensity under the driving current of 20 mA as compared to conventional LED. |
format | Online Article Text |
id | pubmed-8123327 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-81233272021-05-16 Investigation of Photonic-Crystal-Structured p-GaN Nanorods Fabricated by Polystyrene Nanosphere Lithography Method to Improve the Light Extraction Efficiency of InGaN/GaN Green Light-Emitting Diodes Lei, Po-Hsun Yang, Po-Chun Huang, Po-Chun Materials (Basel) Article We fabricated the photonic-crystal-structured p-GaN (PC-structured p-GaN) nanorods using the modified polystyrene nanosphere (PS NS) lithography method for InGaN/GaN green light-emitting diodes (LEDs) to enhance the light extraction efficiency (LEE). A modified PS NS lithography method including two-times spin-coating processes and the post-spin-coating heating treatment was used to obtain a self-assembly close-packed PS NS array of monolayer as a mask and then a partially dry etching process was applied to PS NS, SiO(2), and p-GaN to form PC-structured p-GaN nanorods on the InGaN/GaN green LEDs. The light output intensity and LEE of InGaN/GaN green LEDs with the PC-structured p-GaN nanorods depend on the period, diameter, and height of PC-structured p-GaN nanorods. RSoft FullWAVE software based on the three-dimension finite-difference time-domain (FDTD) algorithm was used to calculate the LEE of InGaN/GaN green LEDs with PC-structured p-GaN nanorods of the varied period, diameter, and height. The optimal period, diameter, and height of PC-structured p-GaN nanorods are 150, 350, and 110 nm. The InGaN/GaN green LEDs with optimal PC-structured p-GaN nanorods exhibit an enhancement of 41% of emission intensity under the driving current of 20 mA as compared to conventional LED. MDPI 2021-04-25 /pmc/articles/PMC8123327/ /pubmed/33922982 http://dx.doi.org/10.3390/ma14092200 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Lei, Po-Hsun Yang, Po-Chun Huang, Po-Chun Investigation of Photonic-Crystal-Structured p-GaN Nanorods Fabricated by Polystyrene Nanosphere Lithography Method to Improve the Light Extraction Efficiency of InGaN/GaN Green Light-Emitting Diodes |
title | Investigation of Photonic-Crystal-Structured p-GaN Nanorods Fabricated by Polystyrene Nanosphere Lithography Method to Improve the Light Extraction Efficiency of InGaN/GaN Green Light-Emitting Diodes |
title_full | Investigation of Photonic-Crystal-Structured p-GaN Nanorods Fabricated by Polystyrene Nanosphere Lithography Method to Improve the Light Extraction Efficiency of InGaN/GaN Green Light-Emitting Diodes |
title_fullStr | Investigation of Photonic-Crystal-Structured p-GaN Nanorods Fabricated by Polystyrene Nanosphere Lithography Method to Improve the Light Extraction Efficiency of InGaN/GaN Green Light-Emitting Diodes |
title_full_unstemmed | Investigation of Photonic-Crystal-Structured p-GaN Nanorods Fabricated by Polystyrene Nanosphere Lithography Method to Improve the Light Extraction Efficiency of InGaN/GaN Green Light-Emitting Diodes |
title_short | Investigation of Photonic-Crystal-Structured p-GaN Nanorods Fabricated by Polystyrene Nanosphere Lithography Method to Improve the Light Extraction Efficiency of InGaN/GaN Green Light-Emitting Diodes |
title_sort | investigation of photonic-crystal-structured p-gan nanorods fabricated by polystyrene nanosphere lithography method to improve the light extraction efficiency of ingan/gan green light-emitting diodes |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8123327/ https://www.ncbi.nlm.nih.gov/pubmed/33922982 http://dx.doi.org/10.3390/ma14092200 |
work_keys_str_mv | AT leipohsun investigationofphotoniccrystalstructuredpgannanorodsfabricatedbypolystyrenenanospherelithographymethodtoimprovethelightextractionefficiencyofingangangreenlightemittingdiodes AT yangpochun investigationofphotoniccrystalstructuredpgannanorodsfabricatedbypolystyrenenanospherelithographymethodtoimprovethelightextractionefficiencyofingangangreenlightemittingdiodes AT huangpochun investigationofphotoniccrystalstructuredpgannanorodsfabricatedbypolystyrenenanospherelithographymethodtoimprovethelightextractionefficiencyofingangangreenlightemittingdiodes |