Cargando…
A Particle Filtering Approach for Fault Detection and Isolation of UAV IMU Sensors: Design, Implementation and Sensitivity Analysis
Sensor fault detection and isolation (SFDI) is a fundamental topic in unmanned aerial vehicle (UAV) development, where attitude estimation plays a key role in flight control systems and its accuracy is crucial for UAV reliability. In commercial drones with low maximum take-off weights, typical redun...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8124649/ https://www.ncbi.nlm.nih.gov/pubmed/33924891 http://dx.doi.org/10.3390/s21093066 |
Sumario: | Sensor fault detection and isolation (SFDI) is a fundamental topic in unmanned aerial vehicle (UAV) development, where attitude estimation plays a key role in flight control systems and its accuracy is crucial for UAV reliability. In commercial drones with low maximum take-off weights, typical redundant architectures, based on triplex, can represent a strong limitation in UAV payload capabilities. This paper proposes an FDI algorithm for low-cost multi-rotor drones equipped with duplex sensor architecture. Here, attitude estimation involves two 9-DoF inertial measurement units (IMUs) including 3-axis accelerometers, gyroscopes and magnetometers. The SFDI algorithm is based on a particle filter approach to promptly detect and isolate IMU faulted sensors. The algorithm has been implemented on a low-cost embedded platform based on a Raspberry Pi board. Its effectiveness and robustness were proved through experimental tests involving realistic faults on a real tri-rotor aircraft. A sensitivity analysis was carried out on the main algorithm parameters in order to find a trade-off between performance, computational burden and reliability. |
---|