Cargando…
Effective Drug Concentration and Selectivity Depends on Fraction of Primitive Cells
Poor efficiency of chemotherapeutics in the eradication of Cancer Stem Cells (CSCs) has been driving the search for more active and specific compounds. In this work, we show how cell density-dependent stage culture profiles can be used in drug development workflows to achieve more robust drug activi...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8125035/ https://www.ncbi.nlm.nih.gov/pubmed/34066491 http://dx.doi.org/10.3390/ijms22094931 |
Sumario: | Poor efficiency of chemotherapeutics in the eradication of Cancer Stem Cells (CSCs) has been driving the search for more active and specific compounds. In this work, we show how cell density-dependent stage culture profiles can be used in drug development workflows to achieve more robust drug activity (IC(50) and EC(50)) results. Using flow cytometry and light microscopy, we characterized the cytological stage profiles of the HL-60-, A-549-, and HEK-293-derived sublines with a focus on their primitive cell content. We then used a range of cytotoxic substances—C-123, bortezomib, idarubicin, C-1305, doxorubicin, DMSO, and ethanol—to highlight typical density-related issues accompanying drug activity determination. We also showed that drug EC(50) and selectivity indices normalized to primitive cell content are more accurate activity measurements. We tested our approach by calculating the corrected selectivity index of a novel chemotherapeutic candidate, C-123. Overall, our study highlights the usefulness of accounting for primitive cell fractions in the assessment of drug efficiency. |
---|