Modeling Structural Dynamics Using FE-Meshfree QUAD4 Element with Radial-Polynomial Basis Functions

The PU (partition-of-unity) based FE-RPIM QUAD4 (4-node quadrilateral) element was proposed for statics problems. In this element, hybrid shape functions are constructed through multiplying QUAD4 shape function with radial point interpolation method (RPIM). In the present work, the FE-RPIM QUAD4 ele...

Descripción completa

Detalles Bibliográficos
Autores principales: Luo, Hongming, Sun, Guanhua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8125648/
https://www.ncbi.nlm.nih.gov/pubmed/33925133
http://dx.doi.org/10.3390/ma14092288
Descripción
Sumario:The PU (partition-of-unity) based FE-RPIM QUAD4 (4-node quadrilateral) element was proposed for statics problems. In this element, hybrid shape functions are constructed through multiplying QUAD4 shape function with radial point interpolation method (RPIM). In the present work, the FE-RPIM QUAD4 element is further applied for structural dynamics. Numerical examples regarding to free and forced vibration analyses are presented. The numerical results show that: (1) If CMM (consistent mass matrix) is employed, the FE-RPIM QUAD4 element has better performance than QUAD4 element under both regular and distorted meshes; (2) The DLMM (diagonally lumped mass matrix) can supersede the CMM in the context of the FE-RPIM QUAD4 element even for the scheme of implicit time integration.