Cargando…

The effect of targeting Tie2 on hemorrhagic shock-induced renal perfusion disturbances in rats

BACKGROUND: Hemorrhagic shock is associated with acute kidney injury and increased mortality. Targeting the endothelial angiopoietin/Tie2 system, which regulates endothelial permeability, previously reduced hemorrhagic shock-induced vascular leakage. We hypothesized that as a consequence of vascular...

Descripción completa

Detalles Bibliográficos
Autores principales: van Leeuwen, Anoek L. I., Dekker, Nicole A. M., Van Slyke, Paul, de Groot, Esther, Vervloet, Marc G., Roelofs, Joris J. T. H., van Meurs, Matijs, van den Brom, Charissa E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8126531/
https://www.ncbi.nlm.nih.gov/pubmed/33997943
http://dx.doi.org/10.1186/s40635-021-00389-5
Descripción
Sumario:BACKGROUND: Hemorrhagic shock is associated with acute kidney injury and increased mortality. Targeting the endothelial angiopoietin/Tie2 system, which regulates endothelial permeability, previously reduced hemorrhagic shock-induced vascular leakage. We hypothesized that as a consequence of vascular leakage, renal perfusion and function is impaired and that activating Tie2 restores renal perfusion and function. METHODS: Rats underwent 1 h of hemorrhagic shock and were treated with either vasculotide or PBS as control, followed by fluid resuscitation for 4 h. Microcirculatory perfusion was measured in the renal cortex and cremaster muscle using contrast echography and intravital microscopy, respectively. Changes in the angiopoietin/Tie2 system and renal injury markers were measured in plasma and on protein and mRNA level in renal tissue. Renal edema formation was determined by wet/dry weight ratios and renal structure by histological analysis. RESULTS: Hemorrhagic shock significantly decreased renal perfusion (240 ± 138 to 51 ± 40, p < 0.0001) and cremaster perfusion (12 ± 2 to 5 ± 2 perfused vessels, p < 0.0001) compared to baseline values. Fluid resuscitation partially restored both perfusion parameters, but both remained below baseline values (renal perfusion 120 ± 58, p = 0.08, cremaster perfusion 7 ± 2 perfused vessels, p < 0.0001 compared to baseline). Hemorrhagic shock increased circulating angiopoietin-1 (p < 0.0001), angiopoietin-2 (p < 0.0001) and soluble Tie2 (p = 0.05), of which angiopoietin-2 elevation was associated with renal edema formation (r = 0.81, p < 0.0001). Hemorrhagic shock induced renal injury, as assessed by increased levels of plasma neutrophil gelatinase-associated lipocalin (NGAL: p < 0.05), kidney injury marker-1 (KIM-1; p < 0.01) and creatinine (p < 0.05). Vasculotide did not improve renal perfusion (p > 0.9 at all time points) or reduce renal injury (NGAL p = 0.26, KIM-1 p = 0.78, creatinine p > 0.9, renal edema p = 0.08), but temporarily improved cremaster perfusion at 3 h following start of fluid resuscitation compared to untreated rats (resuscitation + 3 h: 11 ± 3 vs 8 ± 3 perfused vessels, p < 0.05). CONCLUSION: Hemorrhagic shock-induced renal impairment cannot be restored by standard fluid resuscitation, nor by activation of Tie2. Future treatment strategies should focus on reducing angiopoietin-2 levels or on activating Tie2 via an alternative strategy. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40635-021-00389-5.