Cargando…
USP19 promotes hypoxia-induced mitochondrial division via FUNDC1 at ER-mitochondria contact sites
The ER tethers tightly to mitochondria and the mitochondrial protein FUNDC1 recruits Drp1 to ER-mitochondria contact sites, subsequently facilitating mitochondrial fission and preventing mitochondria from undergoing hypoxic stress. However, the mechanisms by which the ER modulates hypoxia-induced mi...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Rockefeller University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8127008/ https://www.ncbi.nlm.nih.gov/pubmed/33978709 http://dx.doi.org/10.1083/jcb.202010006 |
Sumario: | The ER tethers tightly to mitochondria and the mitochondrial protein FUNDC1 recruits Drp1 to ER-mitochondria contact sites, subsequently facilitating mitochondrial fission and preventing mitochondria from undergoing hypoxic stress. However, the mechanisms by which the ER modulates hypoxia-induced mitochondrial fission are poorly understood. Here, we show that USP19, an ER-resident deubiquitinase, accumulates at ER-mitochondria contact sites under hypoxia and promotes hypoxia-induced mitochondrial division. In response to hypoxia, USP19 binds to and deubiquitinates FUNDC1 at ER-mitochondria contact sites, which facilitates Drp1 oligomerization and Drp1 GTP-binding and hydrolysis activities, thereby promoting mitochondrial division. Our findings reveal a unique hypoxia response pathway mediated by an ER protein that regulates mitochondrial dynamics. |
---|