Cargando…
Atlastin 2/3 regulate ER targeting of the ULK1 complex to initiate autophagy
Dynamic targeting of the ULK1 complex to the ER is crucial for initiating autophagosome formation and for subsequent formation of ER–isolation membrane (IM; autophagosomal precursor) contact during IM expansion. Little is known about how the ULK1 complex, which comprises FIP200, ULK1, ATG13, and ATG...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Rockefeller University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8129792/ https://www.ncbi.nlm.nih.gov/pubmed/33988678 http://dx.doi.org/10.1083/jcb.202012091 |
Sumario: | Dynamic targeting of the ULK1 complex to the ER is crucial for initiating autophagosome formation and for subsequent formation of ER–isolation membrane (IM; autophagosomal precursor) contact during IM expansion. Little is known about how the ULK1 complex, which comprises FIP200, ULK1, ATG13, and ATG101 and does not exist as a constitutively coassembled complex, is recruited and stabilized on the ER. Here, we demonstrate that the ER-localized transmembrane proteins Atlastin 2 and 3 (ATL2/3) contribute to recruitment and stabilization of ULK1 and ATG101 at the FIP200-ATG13–specified autophagosome formation sites on the ER. In ATL2/3 KO cells, formation of FIP200 and ATG13 puncta is unaffected, while targeting of ULK1 and ATG101 is severely impaired. Consequently, IM initiation is compromised and slowed. ATL2/3 directly interact with ULK1 and ATG13 and facilitate the ATG13-mediated recruitment/stabilization of ULK1 and ATG101. ATL2/3 also participate in forming ER–IM tethering complexes. Our study provides insights into the dynamic assembly of the ULK1 complex on the ER for autophagosome formation. |
---|