Cargando…
LPS decreases CFTR open probability and mucociliary transport through generation of reactive oxygen species
Lipopolysaccharide (LPS) serves as the interface between gram-negative bacteria (GNB) and the innate immune response in respiratory epithelial cells (REC). Herein, we describe a novel biological role of LPS that permits GNB to persist in the respiratory tract through inducing CFTR and mucociliary dy...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8129928/ https://www.ncbi.nlm.nih.gov/pubmed/33971543 http://dx.doi.org/10.1016/j.redox.2021.101998 |
_version_ | 1783694405417304064 |
---|---|
author | Cho, Do Yeon Zhang, Shaoyan Lazrak, Ahmed Skinner, Daniel Thompson, Harrison M. Grayson, Jessica Guroji, Purushotham Aggarwal, Saurabh Bebok, Zsuzsanna Rowe, Steven M. Matalon, Sadis Sorscher, Eric J. Woodworth, Bradford A. |
author_facet | Cho, Do Yeon Zhang, Shaoyan Lazrak, Ahmed Skinner, Daniel Thompson, Harrison M. Grayson, Jessica Guroji, Purushotham Aggarwal, Saurabh Bebok, Zsuzsanna Rowe, Steven M. Matalon, Sadis Sorscher, Eric J. Woodworth, Bradford A. |
author_sort | Cho, Do Yeon |
collection | PubMed |
description | Lipopolysaccharide (LPS) serves as the interface between gram-negative bacteria (GNB) and the innate immune response in respiratory epithelial cells (REC). Herein, we describe a novel biological role of LPS that permits GNB to persist in the respiratory tract through inducing CFTR and mucociliary dysfunction. LPS reduced cystic fibrosis transmembrane conductance regulater (CFTR)-mediated short-circuit current in mammalian REC in Ussing chambers and nearly abrogated CFTR single channel activity (defined as forskolin-activated Cl(-) currents) in patch clamp studies, effects of which were blocked with toll-like receptor (TLR)-4 inhibitor. Unitary conductance and single-channel amplitude of CFTR were unaffected, but open probability and number of active channels were markedly decreased. LPS increased cytoplasmic and mitochondrial reactive oxygen species resulting in CFTR carbonylation. All effects of exposure were eliminated when reduced glutathione was added in the medium along with LPS. Functional microanatomy parameters, including mucociliary transport, in human sinonasal epithelial cells in vitro were also decreased, but restored with co-incubation with glutathione or TLR-4 inhibitor. In vivo measurements, following application of LPS in the nasal cavities showed significant decreases in transepithelial Cl(-) secretion as measured by nasal potential difference (NPD) – an effect that was nullified with glutathione and TLR-4 inhibitor. These data provide definitive evidence that LPS-generated reactive intermediates downregulate CFTR function in vitro and in vivo which results in cystic fibrosis-type disease. Findings have implications for therapeutic approaches intent on stimulating Cl(-) secretion and/or reducing oxidative stress to decrease the sequelae of GNB airway colonization and infection. |
format | Online Article Text |
id | pubmed-8129928 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-81299282021-05-21 LPS decreases CFTR open probability and mucociliary transport through generation of reactive oxygen species Cho, Do Yeon Zhang, Shaoyan Lazrak, Ahmed Skinner, Daniel Thompson, Harrison M. Grayson, Jessica Guroji, Purushotham Aggarwal, Saurabh Bebok, Zsuzsanna Rowe, Steven M. Matalon, Sadis Sorscher, Eric J. Woodworth, Bradford A. Redox Biol Research Paper Lipopolysaccharide (LPS) serves as the interface between gram-negative bacteria (GNB) and the innate immune response in respiratory epithelial cells (REC). Herein, we describe a novel biological role of LPS that permits GNB to persist in the respiratory tract through inducing CFTR and mucociliary dysfunction. LPS reduced cystic fibrosis transmembrane conductance regulater (CFTR)-mediated short-circuit current in mammalian REC in Ussing chambers and nearly abrogated CFTR single channel activity (defined as forskolin-activated Cl(-) currents) in patch clamp studies, effects of which were blocked with toll-like receptor (TLR)-4 inhibitor. Unitary conductance and single-channel amplitude of CFTR were unaffected, but open probability and number of active channels were markedly decreased. LPS increased cytoplasmic and mitochondrial reactive oxygen species resulting in CFTR carbonylation. All effects of exposure were eliminated when reduced glutathione was added in the medium along with LPS. Functional microanatomy parameters, including mucociliary transport, in human sinonasal epithelial cells in vitro were also decreased, but restored with co-incubation with glutathione or TLR-4 inhibitor. In vivo measurements, following application of LPS in the nasal cavities showed significant decreases in transepithelial Cl(-) secretion as measured by nasal potential difference (NPD) – an effect that was nullified with glutathione and TLR-4 inhibitor. These data provide definitive evidence that LPS-generated reactive intermediates downregulate CFTR function in vitro and in vivo which results in cystic fibrosis-type disease. Findings have implications for therapeutic approaches intent on stimulating Cl(-) secretion and/or reducing oxidative stress to decrease the sequelae of GNB airway colonization and infection. Elsevier 2021-04-30 /pmc/articles/PMC8129928/ /pubmed/33971543 http://dx.doi.org/10.1016/j.redox.2021.101998 Text en © 2021 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Paper Cho, Do Yeon Zhang, Shaoyan Lazrak, Ahmed Skinner, Daniel Thompson, Harrison M. Grayson, Jessica Guroji, Purushotham Aggarwal, Saurabh Bebok, Zsuzsanna Rowe, Steven M. Matalon, Sadis Sorscher, Eric J. Woodworth, Bradford A. LPS decreases CFTR open probability and mucociliary transport through generation of reactive oxygen species |
title | LPS decreases CFTR open probability and mucociliary transport through generation of reactive oxygen species |
title_full | LPS decreases CFTR open probability and mucociliary transport through generation of reactive oxygen species |
title_fullStr | LPS decreases CFTR open probability and mucociliary transport through generation of reactive oxygen species |
title_full_unstemmed | LPS decreases CFTR open probability and mucociliary transport through generation of reactive oxygen species |
title_short | LPS decreases CFTR open probability and mucociliary transport through generation of reactive oxygen species |
title_sort | lps decreases cftr open probability and mucociliary transport through generation of reactive oxygen species |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8129928/ https://www.ncbi.nlm.nih.gov/pubmed/33971543 http://dx.doi.org/10.1016/j.redox.2021.101998 |
work_keys_str_mv | AT chodoyeon lpsdecreasescftropenprobabilityandmucociliarytransportthroughgenerationofreactiveoxygenspecies AT zhangshaoyan lpsdecreasescftropenprobabilityandmucociliarytransportthroughgenerationofreactiveoxygenspecies AT lazrakahmed lpsdecreasescftropenprobabilityandmucociliarytransportthroughgenerationofreactiveoxygenspecies AT skinnerdaniel lpsdecreasescftropenprobabilityandmucociliarytransportthroughgenerationofreactiveoxygenspecies AT thompsonharrisonm lpsdecreasescftropenprobabilityandmucociliarytransportthroughgenerationofreactiveoxygenspecies AT graysonjessica lpsdecreasescftropenprobabilityandmucociliarytransportthroughgenerationofreactiveoxygenspecies AT gurojipurushotham lpsdecreasescftropenprobabilityandmucociliarytransportthroughgenerationofreactiveoxygenspecies AT aggarwalsaurabh lpsdecreasescftropenprobabilityandmucociliarytransportthroughgenerationofreactiveoxygenspecies AT bebokzsuzsanna lpsdecreasescftropenprobabilityandmucociliarytransportthroughgenerationofreactiveoxygenspecies AT rowestevenm lpsdecreasescftropenprobabilityandmucociliarytransportthroughgenerationofreactiveoxygenspecies AT matalonsadis lpsdecreasescftropenprobabilityandmucociliarytransportthroughgenerationofreactiveoxygenspecies AT sorscherericj lpsdecreasescftropenprobabilityandmucociliarytransportthroughgenerationofreactiveoxygenspecies AT woodworthbradforda lpsdecreasescftropenprobabilityandmucociliarytransportthroughgenerationofreactiveoxygenspecies |