Cargando…
Human airway cells prevent SARS-CoV-2 multibasic cleavage site cell culture adaptation
Virus propagation methods generally use transformed cell lines to grow viruses from clinical specimens, which may force viruses to rapidly adapt to cell culture conditions, a process facilitated by high viral mutation rates. Upon propagation in VeroE6 cells, SARS-CoV-2 may mutate or delete the multi...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8131099/ https://www.ncbi.nlm.nih.gov/pubmed/33835028 http://dx.doi.org/10.7554/eLife.66815 |
_version_ | 1783694647567056896 |
---|---|
author | Lamers, Mart M Mykytyn, Anna Z Breugem, Tim I Wang, Yiquan Wu, Douglas C Riesebosch, Samra van den Doel, Petra B Schipper, Debby Bestebroer, Theo Wu, Nicholas C Haagmans, Bart L |
author_facet | Lamers, Mart M Mykytyn, Anna Z Breugem, Tim I Wang, Yiquan Wu, Douglas C Riesebosch, Samra van den Doel, Petra B Schipper, Debby Bestebroer, Theo Wu, Nicholas C Haagmans, Bart L |
author_sort | Lamers, Mart M |
collection | PubMed |
description | Virus propagation methods generally use transformed cell lines to grow viruses from clinical specimens, which may force viruses to rapidly adapt to cell culture conditions, a process facilitated by high viral mutation rates. Upon propagation in VeroE6 cells, SARS-CoV-2 may mutate or delete the multibasic cleavage site (MBCS) in the spike protein. Previously, we showed that the MBCS facilitates serine protease-mediated entry into human airway cells (Mykytyn et al., 2021). Here, we report that propagating SARS-CoV-2 on the human airway cell line Calu-3 – that expresses serine proteases – prevents cell culture adaptations in the MBCS and directly adjacent to the MBCS (S686G). Similar results were obtained using a human airway organoid-based culture system for SARS-CoV-2 propagation. Thus, in-depth knowledge on the biology of a virus can be used to establish methods to prevent cell culture adaptation. |
format | Online Article Text |
id | pubmed-8131099 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | eLife Sciences Publications, Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-81310992021-05-19 Human airway cells prevent SARS-CoV-2 multibasic cleavage site cell culture adaptation Lamers, Mart M Mykytyn, Anna Z Breugem, Tim I Wang, Yiquan Wu, Douglas C Riesebosch, Samra van den Doel, Petra B Schipper, Debby Bestebroer, Theo Wu, Nicholas C Haagmans, Bart L eLife Microbiology and Infectious Disease Virus propagation methods generally use transformed cell lines to grow viruses from clinical specimens, which may force viruses to rapidly adapt to cell culture conditions, a process facilitated by high viral mutation rates. Upon propagation in VeroE6 cells, SARS-CoV-2 may mutate or delete the multibasic cleavage site (MBCS) in the spike protein. Previously, we showed that the MBCS facilitates serine protease-mediated entry into human airway cells (Mykytyn et al., 2021). Here, we report that propagating SARS-CoV-2 on the human airway cell line Calu-3 – that expresses serine proteases – prevents cell culture adaptations in the MBCS and directly adjacent to the MBCS (S686G). Similar results were obtained using a human airway organoid-based culture system for SARS-CoV-2 propagation. Thus, in-depth knowledge on the biology of a virus can be used to establish methods to prevent cell culture adaptation. eLife Sciences Publications, Ltd 2021-04-09 /pmc/articles/PMC8131099/ /pubmed/33835028 http://dx.doi.org/10.7554/eLife.66815 Text en © 2021, Lamers et al https://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Microbiology and Infectious Disease Lamers, Mart M Mykytyn, Anna Z Breugem, Tim I Wang, Yiquan Wu, Douglas C Riesebosch, Samra van den Doel, Petra B Schipper, Debby Bestebroer, Theo Wu, Nicholas C Haagmans, Bart L Human airway cells prevent SARS-CoV-2 multibasic cleavage site cell culture adaptation |
title | Human airway cells prevent SARS-CoV-2 multibasic cleavage site cell culture adaptation |
title_full | Human airway cells prevent SARS-CoV-2 multibasic cleavage site cell culture adaptation |
title_fullStr | Human airway cells prevent SARS-CoV-2 multibasic cleavage site cell culture adaptation |
title_full_unstemmed | Human airway cells prevent SARS-CoV-2 multibasic cleavage site cell culture adaptation |
title_short | Human airway cells prevent SARS-CoV-2 multibasic cleavage site cell culture adaptation |
title_sort | human airway cells prevent sars-cov-2 multibasic cleavage site cell culture adaptation |
topic | Microbiology and Infectious Disease |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8131099/ https://www.ncbi.nlm.nih.gov/pubmed/33835028 http://dx.doi.org/10.7554/eLife.66815 |
work_keys_str_mv | AT lamersmartm humanairwaycellspreventsarscov2multibasiccleavagesitecellcultureadaptation AT mykytynannaz humanairwaycellspreventsarscov2multibasiccleavagesitecellcultureadaptation AT breugemtimi humanairwaycellspreventsarscov2multibasiccleavagesitecellcultureadaptation AT wangyiquan humanairwaycellspreventsarscov2multibasiccleavagesitecellcultureadaptation AT wudouglasc humanairwaycellspreventsarscov2multibasiccleavagesitecellcultureadaptation AT rieseboschsamra humanairwaycellspreventsarscov2multibasiccleavagesitecellcultureadaptation AT vandendoelpetrab humanairwaycellspreventsarscov2multibasiccleavagesitecellcultureadaptation AT schipperdebby humanairwaycellspreventsarscov2multibasiccleavagesitecellcultureadaptation AT bestebroertheo humanairwaycellspreventsarscov2multibasiccleavagesitecellcultureadaptation AT wunicholasc humanairwaycellspreventsarscov2multibasiccleavagesitecellcultureadaptation AT haagmansbartl humanairwaycellspreventsarscov2multibasiccleavagesitecellcultureadaptation |