Cargando…

Human airway cells prevent SARS-CoV-2 multibasic cleavage site cell culture adaptation

Virus propagation methods generally use transformed cell lines to grow viruses from clinical specimens, which may force viruses to rapidly adapt to cell culture conditions, a process facilitated by high viral mutation rates. Upon propagation in VeroE6 cells, SARS-CoV-2 may mutate or delete the multi...

Descripción completa

Detalles Bibliográficos
Autores principales: Lamers, Mart M, Mykytyn, Anna Z, Breugem, Tim I, Wang, Yiquan, Wu, Douglas C, Riesebosch, Samra, van den Doel, Petra B, Schipper, Debby, Bestebroer, Theo, Wu, Nicholas C, Haagmans, Bart L
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8131099/
https://www.ncbi.nlm.nih.gov/pubmed/33835028
http://dx.doi.org/10.7554/eLife.66815
_version_ 1783694647567056896
author Lamers, Mart M
Mykytyn, Anna Z
Breugem, Tim I
Wang, Yiquan
Wu, Douglas C
Riesebosch, Samra
van den Doel, Petra B
Schipper, Debby
Bestebroer, Theo
Wu, Nicholas C
Haagmans, Bart L
author_facet Lamers, Mart M
Mykytyn, Anna Z
Breugem, Tim I
Wang, Yiquan
Wu, Douglas C
Riesebosch, Samra
van den Doel, Petra B
Schipper, Debby
Bestebroer, Theo
Wu, Nicholas C
Haagmans, Bart L
author_sort Lamers, Mart M
collection PubMed
description Virus propagation methods generally use transformed cell lines to grow viruses from clinical specimens, which may force viruses to rapidly adapt to cell culture conditions, a process facilitated by high viral mutation rates. Upon propagation in VeroE6 cells, SARS-CoV-2 may mutate or delete the multibasic cleavage site (MBCS) in the spike protein. Previously, we showed that the MBCS facilitates serine protease-mediated entry into human airway cells (Mykytyn et al., 2021). Here, we report that propagating SARS-CoV-2 on the human airway cell line Calu-3 – that expresses serine proteases – prevents cell culture adaptations in the MBCS and directly adjacent to the MBCS (S686G). Similar results were obtained using a human airway organoid-based culture system for SARS-CoV-2 propagation. Thus, in-depth knowledge on the biology of a virus can be used to establish methods to prevent cell culture adaptation.
format Online
Article
Text
id pubmed-8131099
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher eLife Sciences Publications, Ltd
record_format MEDLINE/PubMed
spelling pubmed-81310992021-05-19 Human airway cells prevent SARS-CoV-2 multibasic cleavage site cell culture adaptation Lamers, Mart M Mykytyn, Anna Z Breugem, Tim I Wang, Yiquan Wu, Douglas C Riesebosch, Samra van den Doel, Petra B Schipper, Debby Bestebroer, Theo Wu, Nicholas C Haagmans, Bart L eLife Microbiology and Infectious Disease Virus propagation methods generally use transformed cell lines to grow viruses from clinical specimens, which may force viruses to rapidly adapt to cell culture conditions, a process facilitated by high viral mutation rates. Upon propagation in VeroE6 cells, SARS-CoV-2 may mutate or delete the multibasic cleavage site (MBCS) in the spike protein. Previously, we showed that the MBCS facilitates serine protease-mediated entry into human airway cells (Mykytyn et al., 2021). Here, we report that propagating SARS-CoV-2 on the human airway cell line Calu-3 – that expresses serine proteases – prevents cell culture adaptations in the MBCS and directly adjacent to the MBCS (S686G). Similar results were obtained using a human airway organoid-based culture system for SARS-CoV-2 propagation. Thus, in-depth knowledge on the biology of a virus can be used to establish methods to prevent cell culture adaptation. eLife Sciences Publications, Ltd 2021-04-09 /pmc/articles/PMC8131099/ /pubmed/33835028 http://dx.doi.org/10.7554/eLife.66815 Text en © 2021, Lamers et al https://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited.
spellingShingle Microbiology and Infectious Disease
Lamers, Mart M
Mykytyn, Anna Z
Breugem, Tim I
Wang, Yiquan
Wu, Douglas C
Riesebosch, Samra
van den Doel, Petra B
Schipper, Debby
Bestebroer, Theo
Wu, Nicholas C
Haagmans, Bart L
Human airway cells prevent SARS-CoV-2 multibasic cleavage site cell culture adaptation
title Human airway cells prevent SARS-CoV-2 multibasic cleavage site cell culture adaptation
title_full Human airway cells prevent SARS-CoV-2 multibasic cleavage site cell culture adaptation
title_fullStr Human airway cells prevent SARS-CoV-2 multibasic cleavage site cell culture adaptation
title_full_unstemmed Human airway cells prevent SARS-CoV-2 multibasic cleavage site cell culture adaptation
title_short Human airway cells prevent SARS-CoV-2 multibasic cleavage site cell culture adaptation
title_sort human airway cells prevent sars-cov-2 multibasic cleavage site cell culture adaptation
topic Microbiology and Infectious Disease
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8131099/
https://www.ncbi.nlm.nih.gov/pubmed/33835028
http://dx.doi.org/10.7554/eLife.66815
work_keys_str_mv AT lamersmartm humanairwaycellspreventsarscov2multibasiccleavagesitecellcultureadaptation
AT mykytynannaz humanairwaycellspreventsarscov2multibasiccleavagesitecellcultureadaptation
AT breugemtimi humanairwaycellspreventsarscov2multibasiccleavagesitecellcultureadaptation
AT wangyiquan humanairwaycellspreventsarscov2multibasiccleavagesitecellcultureadaptation
AT wudouglasc humanairwaycellspreventsarscov2multibasiccleavagesitecellcultureadaptation
AT rieseboschsamra humanairwaycellspreventsarscov2multibasiccleavagesitecellcultureadaptation
AT vandendoelpetrab humanairwaycellspreventsarscov2multibasiccleavagesitecellcultureadaptation
AT schipperdebby humanairwaycellspreventsarscov2multibasiccleavagesitecellcultureadaptation
AT bestebroertheo humanairwaycellspreventsarscov2multibasiccleavagesitecellcultureadaptation
AT wunicholasc humanairwaycellspreventsarscov2multibasiccleavagesitecellcultureadaptation
AT haagmansbartl humanairwaycellspreventsarscov2multibasiccleavagesitecellcultureadaptation