Cargando…
Cell-type-specific profiling of human cellular models of fragile X syndrome reveal PI3K-dependent defects in translation and neurogenesis
Transcriptional silencing of the FMR1 gene in fragile X syndrome (FXS) leads to the loss of the RNA-binding protein FMRP. In addition to regulating mRNA translation and protein synthesis, emerging evidence suggests that FMRP acts to coordinate proliferation and differentiation during early neural de...
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8133829/ https://www.ncbi.nlm.nih.gov/pubmed/33852833 http://dx.doi.org/10.1016/j.celrep.2021.108991 |
_version_ | 1783695128492244992 |
---|---|
author | Raj, Nisha McEachin, Zachary T. Harousseau, William Zhou, Ying Zhang, Feiran Merritt-Garza, Megan E. Taliaferro, J. Matthew Kalinowska, Magdalena Marro, Samuele G. Hales, Chadwick M. Berry-Kravis, Elizabeth Wolf-Ochoa, Marisol W. Martinez-Cerdeño, Veronica Wernig, Marius Chen, Lu Klann, Eric Warren, Stephen T. Jin, Peng Wen, Zhexing Bassell, Gary J. |
author_facet | Raj, Nisha McEachin, Zachary T. Harousseau, William Zhou, Ying Zhang, Feiran Merritt-Garza, Megan E. Taliaferro, J. Matthew Kalinowska, Magdalena Marro, Samuele G. Hales, Chadwick M. Berry-Kravis, Elizabeth Wolf-Ochoa, Marisol W. Martinez-Cerdeño, Veronica Wernig, Marius Chen, Lu Klann, Eric Warren, Stephen T. Jin, Peng Wen, Zhexing Bassell, Gary J. |
author_sort | Raj, Nisha |
collection | PubMed |
description | Transcriptional silencing of the FMR1 gene in fragile X syndrome (FXS) leads to the loss of the RNA-binding protein FMRP. In addition to regulating mRNA translation and protein synthesis, emerging evidence suggests that FMRP acts to coordinate proliferation and differentiation during early neural development. However, whether loss of FMRP-mediated translational control is related to impaired cell fate specification in the developing human brain remains unknown. Here, we use human patient induced pluripotent stem cell (iPSC)-derived neural progenitor cells and organoids to model neurogenesis in FXS. We developed a high-throughput, in vitro assay that allows for the simultaneous quantification of protein synthesis and proliferation within defined neural subpopulations. We demonstrate that abnormal protein synthesis in FXS is coupled to altered cellular decisions to favor proliferative over neurogenic cell fates during early development. Furthermore, pharmacologic inhibition of elevated phosphoinositide 3-kinase (PI3K) signaling corrects both excess protein synthesis and cell proliferation in a subset of patient neural cells. |
format | Online Article Text |
id | pubmed-8133829 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
record_format | MEDLINE/PubMed |
spelling | pubmed-81338292021-05-19 Cell-type-specific profiling of human cellular models of fragile X syndrome reveal PI3K-dependent defects in translation and neurogenesis Raj, Nisha McEachin, Zachary T. Harousseau, William Zhou, Ying Zhang, Feiran Merritt-Garza, Megan E. Taliaferro, J. Matthew Kalinowska, Magdalena Marro, Samuele G. Hales, Chadwick M. Berry-Kravis, Elizabeth Wolf-Ochoa, Marisol W. Martinez-Cerdeño, Veronica Wernig, Marius Chen, Lu Klann, Eric Warren, Stephen T. Jin, Peng Wen, Zhexing Bassell, Gary J. Cell Rep Article Transcriptional silencing of the FMR1 gene in fragile X syndrome (FXS) leads to the loss of the RNA-binding protein FMRP. In addition to regulating mRNA translation and protein synthesis, emerging evidence suggests that FMRP acts to coordinate proliferation and differentiation during early neural development. However, whether loss of FMRP-mediated translational control is related to impaired cell fate specification in the developing human brain remains unknown. Here, we use human patient induced pluripotent stem cell (iPSC)-derived neural progenitor cells and organoids to model neurogenesis in FXS. We developed a high-throughput, in vitro assay that allows for the simultaneous quantification of protein synthesis and proliferation within defined neural subpopulations. We demonstrate that abnormal protein synthesis in FXS is coupled to altered cellular decisions to favor proliferative over neurogenic cell fates during early development. Furthermore, pharmacologic inhibition of elevated phosphoinositide 3-kinase (PI3K) signaling corrects both excess protein synthesis and cell proliferation in a subset of patient neural cells. 2021-04-13 /pmc/articles/PMC8133829/ /pubmed/33852833 http://dx.doi.org/10.1016/j.celrep.2021.108991 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) ). |
spellingShingle | Article Raj, Nisha McEachin, Zachary T. Harousseau, William Zhou, Ying Zhang, Feiran Merritt-Garza, Megan E. Taliaferro, J. Matthew Kalinowska, Magdalena Marro, Samuele G. Hales, Chadwick M. Berry-Kravis, Elizabeth Wolf-Ochoa, Marisol W. Martinez-Cerdeño, Veronica Wernig, Marius Chen, Lu Klann, Eric Warren, Stephen T. Jin, Peng Wen, Zhexing Bassell, Gary J. Cell-type-specific profiling of human cellular models of fragile X syndrome reveal PI3K-dependent defects in translation and neurogenesis |
title | Cell-type-specific profiling of human cellular models of fragile X syndrome reveal PI3K-dependent defects in translation and neurogenesis |
title_full | Cell-type-specific profiling of human cellular models of fragile X syndrome reveal PI3K-dependent defects in translation and neurogenesis |
title_fullStr | Cell-type-specific profiling of human cellular models of fragile X syndrome reveal PI3K-dependent defects in translation and neurogenesis |
title_full_unstemmed | Cell-type-specific profiling of human cellular models of fragile X syndrome reveal PI3K-dependent defects in translation and neurogenesis |
title_short | Cell-type-specific profiling of human cellular models of fragile X syndrome reveal PI3K-dependent defects in translation and neurogenesis |
title_sort | cell-type-specific profiling of human cellular models of fragile x syndrome reveal pi3k-dependent defects in translation and neurogenesis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8133829/ https://www.ncbi.nlm.nih.gov/pubmed/33852833 http://dx.doi.org/10.1016/j.celrep.2021.108991 |
work_keys_str_mv | AT rajnisha celltypespecificprofilingofhumancellularmodelsoffragilexsyndromerevealpi3kdependentdefectsintranslationandneurogenesis AT mceachinzacharyt celltypespecificprofilingofhumancellularmodelsoffragilexsyndromerevealpi3kdependentdefectsintranslationandneurogenesis AT harousseauwilliam celltypespecificprofilingofhumancellularmodelsoffragilexsyndromerevealpi3kdependentdefectsintranslationandneurogenesis AT zhouying celltypespecificprofilingofhumancellularmodelsoffragilexsyndromerevealpi3kdependentdefectsintranslationandneurogenesis AT zhangfeiran celltypespecificprofilingofhumancellularmodelsoffragilexsyndromerevealpi3kdependentdefectsintranslationandneurogenesis AT merrittgarzamegane celltypespecificprofilingofhumancellularmodelsoffragilexsyndromerevealpi3kdependentdefectsintranslationandneurogenesis AT taliaferrojmatthew celltypespecificprofilingofhumancellularmodelsoffragilexsyndromerevealpi3kdependentdefectsintranslationandneurogenesis AT kalinowskamagdalena celltypespecificprofilingofhumancellularmodelsoffragilexsyndromerevealpi3kdependentdefectsintranslationandneurogenesis AT marrosamueleg celltypespecificprofilingofhumancellularmodelsoffragilexsyndromerevealpi3kdependentdefectsintranslationandneurogenesis AT haleschadwickm celltypespecificprofilingofhumancellularmodelsoffragilexsyndromerevealpi3kdependentdefectsintranslationandneurogenesis AT berrykraviselizabeth celltypespecificprofilingofhumancellularmodelsoffragilexsyndromerevealpi3kdependentdefectsintranslationandneurogenesis AT wolfochoamarisolw celltypespecificprofilingofhumancellularmodelsoffragilexsyndromerevealpi3kdependentdefectsintranslationandneurogenesis AT martinezcerdenoveronica celltypespecificprofilingofhumancellularmodelsoffragilexsyndromerevealpi3kdependentdefectsintranslationandneurogenesis AT wernigmarius celltypespecificprofilingofhumancellularmodelsoffragilexsyndromerevealpi3kdependentdefectsintranslationandneurogenesis AT chenlu celltypespecificprofilingofhumancellularmodelsoffragilexsyndromerevealpi3kdependentdefectsintranslationandneurogenesis AT klanneric celltypespecificprofilingofhumancellularmodelsoffragilexsyndromerevealpi3kdependentdefectsintranslationandneurogenesis AT warrenstephent celltypespecificprofilingofhumancellularmodelsoffragilexsyndromerevealpi3kdependentdefectsintranslationandneurogenesis AT jinpeng celltypespecificprofilingofhumancellularmodelsoffragilexsyndromerevealpi3kdependentdefectsintranslationandneurogenesis AT wenzhexing celltypespecificprofilingofhumancellularmodelsoffragilexsyndromerevealpi3kdependentdefectsintranslationandneurogenesis AT bassellgaryj celltypespecificprofilingofhumancellularmodelsoffragilexsyndromerevealpi3kdependentdefectsintranslationandneurogenesis |