Cargando…

Cell-type-specific profiling of human cellular models of fragile X syndrome reveal PI3K-dependent defects in translation and neurogenesis

Transcriptional silencing of the FMR1 gene in fragile X syndrome (FXS) leads to the loss of the RNA-binding protein FMRP. In addition to regulating mRNA translation and protein synthesis, emerging evidence suggests that FMRP acts to coordinate proliferation and differentiation during early neural de...

Descripción completa

Detalles Bibliográficos
Autores principales: Raj, Nisha, McEachin, Zachary T., Harousseau, William, Zhou, Ying, Zhang, Feiran, Merritt-Garza, Megan E., Taliaferro, J. Matthew, Kalinowska, Magdalena, Marro, Samuele G., Hales, Chadwick M., Berry-Kravis, Elizabeth, Wolf-Ochoa, Marisol W., Martinez-Cerdeño, Veronica, Wernig, Marius, Chen, Lu, Klann, Eric, Warren, Stephen T., Jin, Peng, Wen, Zhexing, Bassell, Gary J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8133829/
https://www.ncbi.nlm.nih.gov/pubmed/33852833
http://dx.doi.org/10.1016/j.celrep.2021.108991
_version_ 1783695128492244992
author Raj, Nisha
McEachin, Zachary T.
Harousseau, William
Zhou, Ying
Zhang, Feiran
Merritt-Garza, Megan E.
Taliaferro, J. Matthew
Kalinowska, Magdalena
Marro, Samuele G.
Hales, Chadwick M.
Berry-Kravis, Elizabeth
Wolf-Ochoa, Marisol W.
Martinez-Cerdeño, Veronica
Wernig, Marius
Chen, Lu
Klann, Eric
Warren, Stephen T.
Jin, Peng
Wen, Zhexing
Bassell, Gary J.
author_facet Raj, Nisha
McEachin, Zachary T.
Harousseau, William
Zhou, Ying
Zhang, Feiran
Merritt-Garza, Megan E.
Taliaferro, J. Matthew
Kalinowska, Magdalena
Marro, Samuele G.
Hales, Chadwick M.
Berry-Kravis, Elizabeth
Wolf-Ochoa, Marisol W.
Martinez-Cerdeño, Veronica
Wernig, Marius
Chen, Lu
Klann, Eric
Warren, Stephen T.
Jin, Peng
Wen, Zhexing
Bassell, Gary J.
author_sort Raj, Nisha
collection PubMed
description Transcriptional silencing of the FMR1 gene in fragile X syndrome (FXS) leads to the loss of the RNA-binding protein FMRP. In addition to regulating mRNA translation and protein synthesis, emerging evidence suggests that FMRP acts to coordinate proliferation and differentiation during early neural development. However, whether loss of FMRP-mediated translational control is related to impaired cell fate specification in the developing human brain remains unknown. Here, we use human patient induced pluripotent stem cell (iPSC)-derived neural progenitor cells and organoids to model neurogenesis in FXS. We developed a high-throughput, in vitro assay that allows for the simultaneous quantification of protein synthesis and proliferation within defined neural subpopulations. We demonstrate that abnormal protein synthesis in FXS is coupled to altered cellular decisions to favor proliferative over neurogenic cell fates during early development. Furthermore, pharmacologic inhibition of elevated phosphoinositide 3-kinase (PI3K) signaling corrects both excess protein synthesis and cell proliferation in a subset of patient neural cells.
format Online
Article
Text
id pubmed-8133829
institution National Center for Biotechnology Information
language English
publishDate 2021
record_format MEDLINE/PubMed
spelling pubmed-81338292021-05-19 Cell-type-specific profiling of human cellular models of fragile X syndrome reveal PI3K-dependent defects in translation and neurogenesis Raj, Nisha McEachin, Zachary T. Harousseau, William Zhou, Ying Zhang, Feiran Merritt-Garza, Megan E. Taliaferro, J. Matthew Kalinowska, Magdalena Marro, Samuele G. Hales, Chadwick M. Berry-Kravis, Elizabeth Wolf-Ochoa, Marisol W. Martinez-Cerdeño, Veronica Wernig, Marius Chen, Lu Klann, Eric Warren, Stephen T. Jin, Peng Wen, Zhexing Bassell, Gary J. Cell Rep Article Transcriptional silencing of the FMR1 gene in fragile X syndrome (FXS) leads to the loss of the RNA-binding protein FMRP. In addition to regulating mRNA translation and protein synthesis, emerging evidence suggests that FMRP acts to coordinate proliferation and differentiation during early neural development. However, whether loss of FMRP-mediated translational control is related to impaired cell fate specification in the developing human brain remains unknown. Here, we use human patient induced pluripotent stem cell (iPSC)-derived neural progenitor cells and organoids to model neurogenesis in FXS. We developed a high-throughput, in vitro assay that allows for the simultaneous quantification of protein synthesis and proliferation within defined neural subpopulations. We demonstrate that abnormal protein synthesis in FXS is coupled to altered cellular decisions to favor proliferative over neurogenic cell fates during early development. Furthermore, pharmacologic inhibition of elevated phosphoinositide 3-kinase (PI3K) signaling corrects both excess protein synthesis and cell proliferation in a subset of patient neural cells. 2021-04-13 /pmc/articles/PMC8133829/ /pubmed/33852833 http://dx.doi.org/10.1016/j.celrep.2021.108991 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) ).
spellingShingle Article
Raj, Nisha
McEachin, Zachary T.
Harousseau, William
Zhou, Ying
Zhang, Feiran
Merritt-Garza, Megan E.
Taliaferro, J. Matthew
Kalinowska, Magdalena
Marro, Samuele G.
Hales, Chadwick M.
Berry-Kravis, Elizabeth
Wolf-Ochoa, Marisol W.
Martinez-Cerdeño, Veronica
Wernig, Marius
Chen, Lu
Klann, Eric
Warren, Stephen T.
Jin, Peng
Wen, Zhexing
Bassell, Gary J.
Cell-type-specific profiling of human cellular models of fragile X syndrome reveal PI3K-dependent defects in translation and neurogenesis
title Cell-type-specific profiling of human cellular models of fragile X syndrome reveal PI3K-dependent defects in translation and neurogenesis
title_full Cell-type-specific profiling of human cellular models of fragile X syndrome reveal PI3K-dependent defects in translation and neurogenesis
title_fullStr Cell-type-specific profiling of human cellular models of fragile X syndrome reveal PI3K-dependent defects in translation and neurogenesis
title_full_unstemmed Cell-type-specific profiling of human cellular models of fragile X syndrome reveal PI3K-dependent defects in translation and neurogenesis
title_short Cell-type-specific profiling of human cellular models of fragile X syndrome reveal PI3K-dependent defects in translation and neurogenesis
title_sort cell-type-specific profiling of human cellular models of fragile x syndrome reveal pi3k-dependent defects in translation and neurogenesis
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8133829/
https://www.ncbi.nlm.nih.gov/pubmed/33852833
http://dx.doi.org/10.1016/j.celrep.2021.108991
work_keys_str_mv AT rajnisha celltypespecificprofilingofhumancellularmodelsoffragilexsyndromerevealpi3kdependentdefectsintranslationandneurogenesis
AT mceachinzacharyt celltypespecificprofilingofhumancellularmodelsoffragilexsyndromerevealpi3kdependentdefectsintranslationandneurogenesis
AT harousseauwilliam celltypespecificprofilingofhumancellularmodelsoffragilexsyndromerevealpi3kdependentdefectsintranslationandneurogenesis
AT zhouying celltypespecificprofilingofhumancellularmodelsoffragilexsyndromerevealpi3kdependentdefectsintranslationandneurogenesis
AT zhangfeiran celltypespecificprofilingofhumancellularmodelsoffragilexsyndromerevealpi3kdependentdefectsintranslationandneurogenesis
AT merrittgarzamegane celltypespecificprofilingofhumancellularmodelsoffragilexsyndromerevealpi3kdependentdefectsintranslationandneurogenesis
AT taliaferrojmatthew celltypespecificprofilingofhumancellularmodelsoffragilexsyndromerevealpi3kdependentdefectsintranslationandneurogenesis
AT kalinowskamagdalena celltypespecificprofilingofhumancellularmodelsoffragilexsyndromerevealpi3kdependentdefectsintranslationandneurogenesis
AT marrosamueleg celltypespecificprofilingofhumancellularmodelsoffragilexsyndromerevealpi3kdependentdefectsintranslationandneurogenesis
AT haleschadwickm celltypespecificprofilingofhumancellularmodelsoffragilexsyndromerevealpi3kdependentdefectsintranslationandneurogenesis
AT berrykraviselizabeth celltypespecificprofilingofhumancellularmodelsoffragilexsyndromerevealpi3kdependentdefectsintranslationandneurogenesis
AT wolfochoamarisolw celltypespecificprofilingofhumancellularmodelsoffragilexsyndromerevealpi3kdependentdefectsintranslationandneurogenesis
AT martinezcerdenoveronica celltypespecificprofilingofhumancellularmodelsoffragilexsyndromerevealpi3kdependentdefectsintranslationandneurogenesis
AT wernigmarius celltypespecificprofilingofhumancellularmodelsoffragilexsyndromerevealpi3kdependentdefectsintranslationandneurogenesis
AT chenlu celltypespecificprofilingofhumancellularmodelsoffragilexsyndromerevealpi3kdependentdefectsintranslationandneurogenesis
AT klanneric celltypespecificprofilingofhumancellularmodelsoffragilexsyndromerevealpi3kdependentdefectsintranslationandneurogenesis
AT warrenstephent celltypespecificprofilingofhumancellularmodelsoffragilexsyndromerevealpi3kdependentdefectsintranslationandneurogenesis
AT jinpeng celltypespecificprofilingofhumancellularmodelsoffragilexsyndromerevealpi3kdependentdefectsintranslationandneurogenesis
AT wenzhexing celltypespecificprofilingofhumancellularmodelsoffragilexsyndromerevealpi3kdependentdefectsintranslationandneurogenesis
AT bassellgaryj celltypespecificprofilingofhumancellularmodelsoffragilexsyndromerevealpi3kdependentdefectsintranslationandneurogenesis