Cargando…

Experimental Evidence for Enhanced Receptor Binding by Rapidly Spreading SARS-CoV-2 Variants

Rapidly spreading new variants of SARS-CoV-2 carry multiple mutations in the viral spike protein which attaches to the angiotensin converting enzyme 2 (ACE2) receptor on host cells. Among these mutations are amino acid changes N501Y (lineage B.1.1.7, first identified in the UK), and the combination...

Descripción completa

Detalles Bibliográficos
Autores principales: Laffeber, Charlie, de Koning, Kelly, Kanaar, Roland, Lebbink, Joyce H.G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Author(s). Published by Elsevier Ltd. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8139174/
https://www.ncbi.nlm.nih.gov/pubmed/34023401
http://dx.doi.org/10.1016/j.jmb.2021.167058
Descripción
Sumario:Rapidly spreading new variants of SARS-CoV-2 carry multiple mutations in the viral spike protein which attaches to the angiotensin converting enzyme 2 (ACE2) receptor on host cells. Among these mutations are amino acid changes N501Y (lineage B.1.1.7, first identified in the UK), and the combination N501Y, E484K, K417N (B.1.351, first identified in South Africa), all located at the interface on the receptor binding domain (RBD). We experimentally establish that RBD containing the N501Y mutation results in 7-fold stronger binding to the hACE2 receptor than wild type RBD. The E484K mutation only slightly enhances the affinity for the receptor, while K417N attenuates affinity. As a result, RBD from B.1.351 containing all three mutations binds 3-fold stronger to hACE2 than wild type RBD but 2-fold weaker than N501Y. However, the recently emerging double mutant E484K/N501Y binds even stronger than N501Y. The independent evolution of lineages containing mutations with different effects on receptor binding affinity, viral transmission and immune evasion underscores the importance of global viral genome surveillance and functional characterization.