Cargando…

Catalytic asymmetric Nakamura reaction by gold(I)/chiral N,Nʹ-dioxide-indium(III) or nickel(II) synergistic catalysis

Intermolecular addition of enols and enolates to unactivated alkynes was proved to be a simple and powerful method for carbon-carbon bond formation. Up to date, a catalytic asymmetric version of alkyne with 1,3-dicarbonyl compound has not been realized. Herein, we achieve the catalytic asymmetric in...

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, Xinyue, Tang, Xiaoxue, Zhang, Xiying, Lin, Lili, Feng, Xiaoming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8140141/
https://www.ncbi.nlm.nih.gov/pubmed/34021138
http://dx.doi.org/10.1038/s41467-021-23105-z
Descripción
Sumario:Intermolecular addition of enols and enolates to unactivated alkynes was proved to be a simple and powerful method for carbon-carbon bond formation. Up to date, a catalytic asymmetric version of alkyne with 1,3-dicarbonyl compound has not been realized. Herein, we achieve the catalytic asymmetric intermolecular addition of 1,3-dicarbonyl compounds to unactivated 1-alkynes attributing to the synergistic activation of chiral N,N′-dioxide-indium(III) or nickel(II) Lewis acid and achiral gold(I) π-acid. A range of β-ketoamides, β-ketoesters and 1,3-diketones transform to the corresponding products with a tetra-substituted chiral center in good yields with good e.r. values. Besides, a possible catalytic cycle and a transition state model are proposed to illustrate the reaction process and the origin of chiral induction based on the experimental investigations.