Cargando…

Predicting MHC I restricted T cell epitopes in mice with NAP-CNB, a novel online tool

Lack of a dedicated integrated pipeline for neoantigen discovery in mice hinders cancer immunotherapy research. Novel sequential approaches through recurrent neural networks can improve the accuracy of T-cell epitope binding affinity predictions in mice, and a simplified variant selection process ca...

Descripción completa

Detalles Bibliográficos
Autores principales: Wert-Carvajal, Carlos, Sánchez-García, Rubén, Macías, José R, Sanz-Pamplona, Rebeca, Pérez, Almudena Méndez, Alemany, Ramon, Veiga, Esteban, Sorzano, Carlos Óscar S., Muñoz-Barrutia, Arrate
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8144223/
https://www.ncbi.nlm.nih.gov/pubmed/34031450
http://dx.doi.org/10.1038/s41598-021-89927-5
_version_ 1783696917527527424
author Wert-Carvajal, Carlos
Sánchez-García, Rubén
Macías, José R
Sanz-Pamplona, Rebeca
Pérez, Almudena Méndez
Alemany, Ramon
Veiga, Esteban
Sorzano, Carlos Óscar S.
Muñoz-Barrutia, Arrate
author_facet Wert-Carvajal, Carlos
Sánchez-García, Rubén
Macías, José R
Sanz-Pamplona, Rebeca
Pérez, Almudena Méndez
Alemany, Ramon
Veiga, Esteban
Sorzano, Carlos Óscar S.
Muñoz-Barrutia, Arrate
author_sort Wert-Carvajal, Carlos
collection PubMed
description Lack of a dedicated integrated pipeline for neoantigen discovery in mice hinders cancer immunotherapy research. Novel sequential approaches through recurrent neural networks can improve the accuracy of T-cell epitope binding affinity predictions in mice, and a simplified variant selection process can reduce operational requirements. We have developed a web server tool (NAP-CNB) for a full and automatic pipeline based on recurrent neural networks, to predict putative neoantigens from tumoral RNA sequencing reads. The developed software can estimate H-2 peptide ligands, with an AUC comparable or superior to state-of-the-art methods, directly from tumor samples. As a proof-of-concept, we used the B16 melanoma model to test the system’s predictive capabilities, and we report its putative neoantigens. NAP-CNB web server is freely available at http://biocomp.cnb.csic.es/NeoantigensApp/ with scripts and datasets accessible through the download section.
format Online
Article
Text
id pubmed-8144223
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-81442232021-05-25 Predicting MHC I restricted T cell epitopes in mice with NAP-CNB, a novel online tool Wert-Carvajal, Carlos Sánchez-García, Rubén Macías, José R Sanz-Pamplona, Rebeca Pérez, Almudena Méndez Alemany, Ramon Veiga, Esteban Sorzano, Carlos Óscar S. Muñoz-Barrutia, Arrate Sci Rep Article Lack of a dedicated integrated pipeline for neoantigen discovery in mice hinders cancer immunotherapy research. Novel sequential approaches through recurrent neural networks can improve the accuracy of T-cell epitope binding affinity predictions in mice, and a simplified variant selection process can reduce operational requirements. We have developed a web server tool (NAP-CNB) for a full and automatic pipeline based on recurrent neural networks, to predict putative neoantigens from tumoral RNA sequencing reads. The developed software can estimate H-2 peptide ligands, with an AUC comparable or superior to state-of-the-art methods, directly from tumor samples. As a proof-of-concept, we used the B16 melanoma model to test the system’s predictive capabilities, and we report its putative neoantigens. NAP-CNB web server is freely available at http://biocomp.cnb.csic.es/NeoantigensApp/ with scripts and datasets accessible through the download section. Nature Publishing Group UK 2021-05-24 /pmc/articles/PMC8144223/ /pubmed/34031450 http://dx.doi.org/10.1038/s41598-021-89927-5 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Wert-Carvajal, Carlos
Sánchez-García, Rubén
Macías, José R
Sanz-Pamplona, Rebeca
Pérez, Almudena Méndez
Alemany, Ramon
Veiga, Esteban
Sorzano, Carlos Óscar S.
Muñoz-Barrutia, Arrate
Predicting MHC I restricted T cell epitopes in mice with NAP-CNB, a novel online tool
title Predicting MHC I restricted T cell epitopes in mice with NAP-CNB, a novel online tool
title_full Predicting MHC I restricted T cell epitopes in mice with NAP-CNB, a novel online tool
title_fullStr Predicting MHC I restricted T cell epitopes in mice with NAP-CNB, a novel online tool
title_full_unstemmed Predicting MHC I restricted T cell epitopes in mice with NAP-CNB, a novel online tool
title_short Predicting MHC I restricted T cell epitopes in mice with NAP-CNB, a novel online tool
title_sort predicting mhc i restricted t cell epitopes in mice with nap-cnb, a novel online tool
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8144223/
https://www.ncbi.nlm.nih.gov/pubmed/34031450
http://dx.doi.org/10.1038/s41598-021-89927-5
work_keys_str_mv AT wertcarvajalcarlos predictingmhcirestrictedtcellepitopesinmicewithnapcnbanovelonlinetool
AT sanchezgarciaruben predictingmhcirestrictedtcellepitopesinmicewithnapcnbanovelonlinetool
AT maciasjoser predictingmhcirestrictedtcellepitopesinmicewithnapcnbanovelonlinetool
AT sanzpamplonarebeca predictingmhcirestrictedtcellepitopesinmicewithnapcnbanovelonlinetool
AT perezalmudenamendez predictingmhcirestrictedtcellepitopesinmicewithnapcnbanovelonlinetool
AT alemanyramon predictingmhcirestrictedtcellepitopesinmicewithnapcnbanovelonlinetool
AT veigaesteban predictingmhcirestrictedtcellepitopesinmicewithnapcnbanovelonlinetool
AT sorzanocarlososcars predictingmhcirestrictedtcellepitopesinmicewithnapcnbanovelonlinetool
AT munozbarrutiaarrate predictingmhcirestrictedtcellepitopesinmicewithnapcnbanovelonlinetool