Cargando…

Deletion of Mitochondrial Translocator Protein (TSPO) Gene Decreases Oxidative Retinal Pigment Epithelial Cell Death via Modulation of TRPM2 Channel

SIMPLE SUMMARY: 18 kDa mitochondrial translocator protein (TSPO) is a mitochondria protein of the cellular outer membrane in the mitochondria of several cells, including ARPE19 is TSPO. Accumulating evince indicates that the presence of TSPO participated the modulations of Ca(2+) homeostasis and mit...

Descripción completa

Detalles Bibliográficos
Autores principales: Özkaya, Dilek, Shu, Xinhua, Nazıroğlu, Mustafa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8145237/
https://www.ncbi.nlm.nih.gov/pubmed/33924902
http://dx.doi.org/10.3390/biology10050382
Descripción
Sumario:SIMPLE SUMMARY: 18 kDa mitochondrial translocator protein (TSPO) is a mitochondria protein of the cellular outer membrane in the mitochondria of several cells, including ARPE19 is TSPO. Accumulating evince indicates that the presence of TSPO participated the modulations of Ca(2+) homeostasis and mitochondrial free reactive oxygen species (fROS) generation. The deletion of TSPO gene provides to study the action of TSPO on the levels of apoptosis, ADP-ribose (ADPR), mitochondria-fROS (Mito-fROS), and apoptosis via the stimulation of Ca(2+) permeable channels in the models of cell culture. The stimulations of oxidative stress and ADPR induce the activation of TRPM2 in the ARPE19. For clarifying the involvement of TSPO in retinal human diseases, we used the ARPE19 human cell culture model. The current results demonstrated that the deletion of TSPO induces the regulation of TRPM2 in the TSPO gene knockout ARPE19 (ARPE19-KO) In fact, the present results show that the presence of TSPO increased the upregulations of apoptosis and mitochondria oxidative cytotoxicity values via stimulation of TRPM2 in the ARPE19. Nevertheless, the blockages of PARP-1 (PJ34 and DPQ) and TRPM2 (2APB and ACA) downregulated the values of cell death and oxidative cytotoxicity in the ARPE19. In summary, present results clearly demonstrate that the deletion of TSPO decreases mitochondrial oxidative cytotoxicity-mediated cell death via the modulation of TRPM2 in the ARPE19. ABSTRACT: The current results indicated the possible protective actions of 18 kDa mitochondrial translocator protein (TSPO) deletion on TRPM2 stimulation, mitochondrial free ROS (Mito-fROS) and apoptotic harmful actions in the cells of adult retinal pigment epithelial19 (ARPE19). There was a direct relationship between TSPO and the disease of age-related macular degeneration. The nature of TSPO implicates upregulation of Mito-fROS and apoptosis via the activation of Ca(2+) channels in ARPE19, although deletion of TSPO gene downregulates the activation. The decrease of oxidative cytotoxicity and apoptosis might induce in TSPO gene deleted cells by the inhibition of Mito-fROS and PARP-1 activation-induced TRPM2 cation channel activation. The ARPE19 cells were divided into two main groups as TSPO expressing (ARPE19) and non-expressing cells (ARPE19-KO). The levels of caspase -3 (Casp -3), caspase -9 (Casp -9), apoptosis, Mito-fROS, TRPM2 current and intracellular free Ca(2+) were upregulated in the ARPE19 by the stimulations of H(2)O(2) and ADP-ribose, although their levels were downregulated in the cells by the modulators of PARP-1 (DPQ and PJ34), TRPM2 (ACA and 2APB) and glutathione. However, the H(2)O(2) and ADP-ribose-mediated increases were not observed in the ARPE19-KO. The expression levels of Bax, Casp -3, Casp -9 and PARP-1 were higher in the ARPE19 group as compared to the ARPE19-KO group. In summary, current results confirmed that TRPM2-mediated cell death and oxidative cytotoxicity in the ARPE19 cells were occurred by the presence of TSPO. The deletion of TSPO may be considered as a therapeutic way to TRPM2 activation-mediated retinal oxidative injury.