Cargando…
Investigating Cellular Trajectories in the Severity of COVID-19 and Their Transcriptional Programs Using Machine Learning Approaches
Single-cell RNA sequencing of the bronchoalveolar lavage fluid (BALF) samples from COVID-19 patients has enabled us to examine gene expression changes of human tissue in response to the SARS-CoV-2 virus infection. However, the underlying mechanisms of COVID-19 pathogenesis at single-cell resolution,...
Autores principales: | Jeong, Hyun-Hwan, Jia, Johnathan, Dai, Yulin, Simon, Lukas M., Zhao, Zhongming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8145325/ https://www.ncbi.nlm.nih.gov/pubmed/33923155 http://dx.doi.org/10.3390/genes12050635 |
Ejemplares similares
-
Association of CXCR6 with COVID-19 severity: Delineating the host genetic factors in transcriptomic regulation
por: Dai, Yulin, et al.
Publicado: (2021) -
Association of CXCR6 with COVID-19 severity: delineating the host genetic factors in transcriptomic regulation
por: Dai, Yulin, et al.
Publicado: (2021) -
Deep learning for detecting and elucidating human T-cell leukemia virus type 1 integration in the human genome
por: Xu, Haodong, et al.
Publicado: (2023) -
Investigating cellular heterogeneity at the single-cell level by the flexible and mobile extrachromosomal circular DNA
por: Kang, Jiajinlong, et al.
Publicado: (2023) -
DrivAER: Identification of driving transcriptional programs in single-cell RNA sequencing data
por: Simon, Lukas M, et al.
Publicado: (2020)