Cargando…

High Performance p-i-n Photodetectors on Ge-on-Insulator Platform

In this article, we demonstrated novel methods to improve the performance of p-i-n photodetectors (PDs) on a germanium-on-insulator (GOI). For GOI photodetectors with a mesa diameter of 10 μm, the dark current at −1 V is 2.5 nA, which is 2.6-fold lower than that of the Ge PD processed on Si substrat...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Xuewei, Wang, Guilei, Lin, Hongxiao, Du, Yong, Luo, Xue, Kong, Zhenzhen, Su, Jiale, Li, Junjie, Xiong, Wenjuan, Miao, Yuanhao, Li, Haiou, Guo, Guoping, Radamson, Henry H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8145456/
https://www.ncbi.nlm.nih.gov/pubmed/33925305
http://dx.doi.org/10.3390/nano11051125
Descripción
Sumario:In this article, we demonstrated novel methods to improve the performance of p-i-n photodetectors (PDs) on a germanium-on-insulator (GOI). For GOI photodetectors with a mesa diameter of 10 μm, the dark current at −1 V is 2.5 nA, which is 2.6-fold lower than that of the Ge PD processed on Si substrates. This improvement in dark current is due to the careful removal of the defected Ge layer, which is formed with the initial growth of Ge on Si. The bulk leakage current density and surface leakage density of the GOI detector at −1 V are as low as 1.79 mA/cm(2) and 0.34 μA/cm, respectively. GOI photodetectors with responsivity of 0.5 and 0.9 A/W at 1550 and 1310 nm wavelength are demonstrated. The optical performance of the GOI photodetector could be remarkably improved by integrating a tetraethylorthosilicate (TEOS) layer on the oxide side due to the better optical confinement and resonant cavity effect. These PDs with high performances and full compatibility with Si CMOS processes are attractive for applications in both telecommunications and monolithic optoelectronics integration on the same chip.