Cargando…
Green Production of Cladribine by Using Immobilized 2′-Deoxyribosyltransferase from Lactobacillus delbrueckii Stabilized through a Double Covalent/Entrapment Technology
Nowadays, enzyme-mediated processes offer an eco-friendly and efficient alternative to the traditional multistep and environmentally harmful chemical processes. Herein we report the enzymatic synthesis of cladribine by a novel 2′-deoxyribosyltransferase (NDT)-based combined biocatalyst. To this end,...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8146660/ https://www.ncbi.nlm.nih.gov/pubmed/33947162 http://dx.doi.org/10.3390/biom11050657 |
Sumario: | Nowadays, enzyme-mediated processes offer an eco-friendly and efficient alternative to the traditional multistep and environmentally harmful chemical processes. Herein we report the enzymatic synthesis of cladribine by a novel 2′-deoxyribosyltransferase (NDT)-based combined biocatalyst. To this end, Lactobacillus delbrueckii NDT (LdNDT) was successfully immobilized through a two-step immobilization methodology, including a covalent immobilization onto glutaraldehyde-activated biomimetic silica nanoparticles followed by biocatalyst entrapment in calcium alginate. The resulting immobilized derivative, SiG(PEI 25000)-LdNDT-Alg, displayed 98% retained activity and was shown to be active and stable in a broad range of pH (5–9) and temperature (30–60 °C), but also displayed an extremely high reusability (up to 2100 reuses without negligible loss of activity) in the enzymatic production of cladribine. Finally, as a proof of concept, SiG(PEI 25000)-LdNDT-Alg was successfully employed in the green production of cladribine at mg scale. |
---|