Cargando…
Celastrol targets adenylyl cyclase-associated protein 1 to reduce macrophages-mediated inflammation and ameliorates high fat diet-induced metabolic syndrome in mice
Metabolic syndrome is a clustering of metabolic disorder with unclear molecular mechanism. Increasing studies have found that the pathogenesis and progression of metabolic syndrome are closely related to inflammation. Here, we report celastrol, a traditional Chinese medicine, can improve high fat di...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8148064/ https://www.ncbi.nlm.nih.gov/pubmed/34094828 http://dx.doi.org/10.1016/j.apsb.2020.12.008 |
Sumario: | Metabolic syndrome is a clustering of metabolic disorder with unclear molecular mechanism. Increasing studies have found that the pathogenesis and progression of metabolic syndrome are closely related to inflammation. Here, we report celastrol, a traditional Chinese medicine, can improve high fat diet-induced metabolic syndrome through suppressing resistin-induced inflammation. Mechanistically, celastrol binds to adenylyl cyclase associated protein 1 (CAP1) and inhibits the interaction between CAP1 and resistin, which restrains the cyclic adenylate monophosphate (cAMP)–protein kinase A (PKA)–nuclear factor kappa-B (NF-κB) signaling pathway and ameliorates high fat diet-induced murine metabolic syndrome. Knockdown of CAP1 in macrophages abrogated the resistin-mediated inflammatory activity. In contrast, overexpression of CAP1 in macrophages aggravated inflammation. Taken together, our study identifies celastrol, which directly targets CAP1 in macrophages, might be a promising drug candidate for the treatment of inflammatory metabolic diseases, such as metabolic syndrome. |
---|