Cargando…
ECMarker: interpretable machine learning model identifies gene expression biomarkers predicting clinical outcomes and reveals molecular mechanisms of human disease in early stages
MOTIVATION: Gene expression and regulation, a key molecular mechanism driving human disease development, remains elusive, especially at early stages. Integrating the increasing amount of population-level genomic data and understanding gene regulatory mechanisms in disease development are still chall...
Autores principales: | Jin, Ting, Nguyen, Nam D, Talos, Flaminia, Wang, Daifeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8150141/ https://www.ncbi.nlm.nih.gov/pubmed/33305308 http://dx.doi.org/10.1093/bioinformatics/btaa935 |
Ejemplares similares
-
Interpretable
Machine Learning on Metabolomics Data
Reveals Biomarkers for Parkinson’s Disease
por: Zhang, J. Diana, et al.
Publicado: (2023) -
A computational systems approach identifies synergistic specification genes that facilitate lineage conversion to prostate tissue
por: Talos, Flaminia, et al.
Publicado: (2017) -
An interpretable machine learning approach to identify mechanism of action of antibiotics
por: Mongia, Mihir, et al.
Publicado: (2022) -
Integration of Radiomics and Tumor Biomarkers in Interpretable Machine Learning Models
por: Brocki, Lennart, et al.
Publicado: (2023) -
ManiNetCluster: a novel manifold learning approach to reveal the functional links between gene networks
por: Nguyen, Nam D., et al.
Publicado: (2019)