Cargando…
Drug Target Identification with Machine Learning: How to Choose Negative Examples
Identification of the protein targets of hit molecules is essential in the drug discovery process. Target prediction with machine learning algorithms can help accelerate this search, limiting the number of required experiments. However, Drug-Target Interactions databases used for training present hi...
Autores principales: | Najm, Matthieu, Azencott, Chloé-Agathe, Playe, Benoit, Stoven, Véronique |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8151112/ https://www.ncbi.nlm.nih.gov/pubmed/34066072 http://dx.doi.org/10.3390/ijms22105118 |
Ejemplares similares
-
Efficient multi-task chemogenomics for drug specificity prediction
por: Playe, Benoit, et al.
Publicado: (2018) -
Evaluation of deep and shallow learning methods in chemogenomics for the prediction of drugs specificity
por: Playe, Benoit, et al.
Publicado: (2020) -
Choosing negative examples for the prediction of protein-protein interactions
por: Ben-Hur, Asa, et al.
Publicado: (2006) -
How to Choose the Right Mate
por: Arcangioli, Benoit
Publicado: (2013) -
LOTUS: A single- and multitask machine learning algorithm for the prediction of cancer driver genes
por: Collier, Olivier, et al.
Publicado: (2019)