Cargando…

Mechanistic basis for tuning iridium hydride photochemistry from H(2) evolution to hydride transfer hydrodechlorination

The photochemistry of metal hydride complexes is dominated by H(2) evolution, limiting access to reductive transformations based on photochemical hydride transfer. In this article, the innate H(2) evolution photochemistry of the iridium hydride complexes [Cp*Ir(bpy-OMe)H](+) (1, bpy-OMe = 4,4ʹ-dimet...

Descripción completa

Detalles Bibliográficos
Autores principales: Barrett, Seth M., Stratakes, Bethany M., Chambers, Matthew B., Kurtz, Daniel A., Pitman, Catherine L., Dempsey, Jillian L., Miller, Alexander J. M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8152724/
https://www.ncbi.nlm.nih.gov/pubmed/34094109
http://dx.doi.org/10.1039/d0sc00422g
_version_ 1783698654554488832
author Barrett, Seth M.
Stratakes, Bethany M.
Chambers, Matthew B.
Kurtz, Daniel A.
Pitman, Catherine L.
Dempsey, Jillian L.
Miller, Alexander J. M.
author_facet Barrett, Seth M.
Stratakes, Bethany M.
Chambers, Matthew B.
Kurtz, Daniel A.
Pitman, Catherine L.
Dempsey, Jillian L.
Miller, Alexander J. M.
author_sort Barrett, Seth M.
collection PubMed
description The photochemistry of metal hydride complexes is dominated by H(2) evolution, limiting access to reductive transformations based on photochemical hydride transfer. In this article, the innate H(2) evolution photochemistry of the iridium hydride complexes [Cp*Ir(bpy-OMe)H](+) (1, bpy-OMe = 4,4ʹ-dimethoxy-2,2′-bipyridine) and [Cp*Ir(bpy)H](+) (2, bpy = 2,2ʹ-bipyridine) is diverted towards photochemical hydrodechlorination. Net hydride transfer from 1 and 2 to dichloromethane produces chloromethane with high selectivity and exceptional photochemical quantum yield (Φ ≤ 1.3). Thermodynamic and kinetic mechanistic studies are consistent with a non-radical-chain reaction sequence initiated by “self-quenching” electron transfer between excited state and ground state hydride complexes, followed by proton-coupled electron transfer (PCET) hydrodechlorination that outcompetes H–H coupling. This unique photochemical mechanism provides a new hope for the development of light-driven hydride transfer reactions.
format Online
Article
Text
id pubmed-8152724
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-81527242021-06-04 Mechanistic basis for tuning iridium hydride photochemistry from H(2) evolution to hydride transfer hydrodechlorination Barrett, Seth M. Stratakes, Bethany M. Chambers, Matthew B. Kurtz, Daniel A. Pitman, Catherine L. Dempsey, Jillian L. Miller, Alexander J. M. Chem Sci Chemistry The photochemistry of metal hydride complexes is dominated by H(2) evolution, limiting access to reductive transformations based on photochemical hydride transfer. In this article, the innate H(2) evolution photochemistry of the iridium hydride complexes [Cp*Ir(bpy-OMe)H](+) (1, bpy-OMe = 4,4ʹ-dimethoxy-2,2′-bipyridine) and [Cp*Ir(bpy)H](+) (2, bpy = 2,2ʹ-bipyridine) is diverted towards photochemical hydrodechlorination. Net hydride transfer from 1 and 2 to dichloromethane produces chloromethane with high selectivity and exceptional photochemical quantum yield (Φ ≤ 1.3). Thermodynamic and kinetic mechanistic studies are consistent with a non-radical-chain reaction sequence initiated by “self-quenching” electron transfer between excited state and ground state hydride complexes, followed by proton-coupled electron transfer (PCET) hydrodechlorination that outcompetes H–H coupling. This unique photochemical mechanism provides a new hope for the development of light-driven hydride transfer reactions. The Royal Society of Chemistry 2020-03-06 /pmc/articles/PMC8152724/ /pubmed/34094109 http://dx.doi.org/10.1039/d0sc00422g Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/
spellingShingle Chemistry
Barrett, Seth M.
Stratakes, Bethany M.
Chambers, Matthew B.
Kurtz, Daniel A.
Pitman, Catherine L.
Dempsey, Jillian L.
Miller, Alexander J. M.
Mechanistic basis for tuning iridium hydride photochemistry from H(2) evolution to hydride transfer hydrodechlorination
title Mechanistic basis for tuning iridium hydride photochemistry from H(2) evolution to hydride transfer hydrodechlorination
title_full Mechanistic basis for tuning iridium hydride photochemistry from H(2) evolution to hydride transfer hydrodechlorination
title_fullStr Mechanistic basis for tuning iridium hydride photochemistry from H(2) evolution to hydride transfer hydrodechlorination
title_full_unstemmed Mechanistic basis for tuning iridium hydride photochemistry from H(2) evolution to hydride transfer hydrodechlorination
title_short Mechanistic basis for tuning iridium hydride photochemistry from H(2) evolution to hydride transfer hydrodechlorination
title_sort mechanistic basis for tuning iridium hydride photochemistry from h(2) evolution to hydride transfer hydrodechlorination
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8152724/
https://www.ncbi.nlm.nih.gov/pubmed/34094109
http://dx.doi.org/10.1039/d0sc00422g
work_keys_str_mv AT barrettsethm mechanisticbasisfortuningiridiumhydridephotochemistryfromh2evolutiontohydridetransferhydrodechlorination
AT stratakesbethanym mechanisticbasisfortuningiridiumhydridephotochemistryfromh2evolutiontohydridetransferhydrodechlorination
AT chambersmatthewb mechanisticbasisfortuningiridiumhydridephotochemistryfromh2evolutiontohydridetransferhydrodechlorination
AT kurtzdaniela mechanisticbasisfortuningiridiumhydridephotochemistryfromh2evolutiontohydridetransferhydrodechlorination
AT pitmancatherinel mechanisticbasisfortuningiridiumhydridephotochemistryfromh2evolutiontohydridetransferhydrodechlorination
AT dempseyjillianl mechanisticbasisfortuningiridiumhydridephotochemistryfromh2evolutiontohydridetransferhydrodechlorination
AT milleralexanderjm mechanisticbasisfortuningiridiumhydridephotochemistryfromh2evolutiontohydridetransferhydrodechlorination