Cargando…

DNA methylation analysis: speedup of bisulfite-mediated deamination of cytosine in the genomic sequencing procedure

Understanding the biological consequences of DNA methylation is a current focus of intensive studies. A standard method for analyzing the methylation at position 5 of cytosines in genomic DNA involves chemical modification of the DNA with bisulfite, followed by PCR amplification and sequencing. Bisu...

Descripción completa

Detalles Bibliográficos
Autores principales: Hayatsu, Hikoya, Negishi, Kazuo, Shiraishi, Masahiko
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Japan Academy 2004
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8153359/
Descripción
Sumario:Understanding the biological consequences of DNA methylation is a current focus of intensive studies. A standard method for analyzing the methylation at position 5 of cytosines in genomic DNA involves chemical modification of the DNA with bisulfite, followed by PCR amplification and sequencing. Bisulfite deaminates cytosine, but it deaminates 5-methylcytosine only very slowly, thereby allowing determination of the methylated sites. The deamination is usually performed using sodium bisulfite solutions of 3–5 M concentration with an incubation period of 12–16 hr at 50 °C. We demonstrate here that this deamination can be speeded up significantly. We prepared a solution of 10 M bisulfite concentration of pH 5.4 and used it to treat DNA at temperatures up to 90 °C. In an experiment, in which denatured DNA was treated with 9 M bisulfite for 10 min at 90 °C, deamination of cytosines occurred to an extent of 99.6%, while 5-methylcytosine residues in the DNA were deaminated at less than 10%. Using a plasmid DNA fragment, we observed that the DNA can serve as a template for PCR amplification after the bisulfite treatment. This new procedure is expected to offer a significantly improved genomic sequencing method, leading to the promotion of research on understanding the biological and medical significance of DNA methylation.