Cargando…
Deep exploration of random forest model boosts the interpretability of machine learning studies of complicated immune responses and lung burden of nanoparticles
The development of machine learning provides solutions for predicting the complicated immune responses and pharmacokinetics of nanoparticles (NPs) in vivo. However, highly heterogeneous data in NP studies remain challenging because of the low interpretability of machine learning. Here, we propose a...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8153727/ https://www.ncbi.nlm.nih.gov/pubmed/34039604 http://dx.doi.org/10.1126/sciadv.abf4130 |