Cargando…
Deep exploration of random forest model boosts the interpretability of machine learning studies of complicated immune responses and lung burden of nanoparticles
The development of machine learning provides solutions for predicting the complicated immune responses and pharmacokinetics of nanoparticles (NPs) in vivo. However, highly heterogeneous data in NP studies remain challenging because of the low interpretability of machine learning. Here, we propose a...
Autores principales: | Yu, Fubo, Wei, Changhong, Deng, Peng, Peng, Ting, Hu, Xiangang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8153727/ https://www.ncbi.nlm.nih.gov/pubmed/34039604 http://dx.doi.org/10.1126/sciadv.abf4130 |
Ejemplares similares
-
Machine learning predicts the functional composition of the protein corona and the cellular recognition of nanoparticles
por: Ban, Zhan, et al.
Publicado: (2020) -
Development potential of nanoenabled agriculture projected using machine learning
por: Deng, Peng, et al.
Publicado: (2023) -
Nanohole-boosted electron transport between nanomaterials and bacteria as a concept for nano–bio interactions
por: Shi, Tonglei, et al.
Publicado: (2021) -
Adaptive boosting of random forest algorithm for automatic petrophysical interpretation of well logs
por: Srivardhan, V.
Publicado: (2022) -
Boosting the Accuracy of Commercial Real Estate Appraisals: An Interpretable Machine Learning Approach
por: Deppner, Juergen, et al.
Publicado: (2023)