Cargando…
NEBULA is a fast negative binomial mixed model for differential or co-expression analysis of large-scale multi-subject single-cell data
The increasing availability of single-cell data revolutionizes the understanding of biological mechanisms at cellular resolution. For differential expression analysis in multi-subject single-cell data, negative binomial mixed models account for both subject-level and cell-level overdispersions, but...
Autores principales: | He, Liang, Davila-Velderrain, Jose, Sumida, Tomokazu S., Hafler, David A., Kellis, Manolis, Kulminski, Alexander M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8155058/ https://www.ncbi.nlm.nih.gov/pubmed/34040149 http://dx.doi.org/10.1038/s42003-021-02146-6 |
Ejemplares similares
-
A multiresolution framework to characterize single-cell state landscapes
por: Mohammadi, Shahin, et al.
Publicado: (2020) -
Integrative construction of regulatory region networks in 127 human reference epigenomes by matrix factorization
por: Liu, Dianbo, et al.
Publicado: (2019) -
Negative binomial mixed models for analyzing microbiome count data
por: Zhang, Xinyan, et al.
Publicado: (2017) -
Negative Binomial Mixed Models for Analyzing Longitudinal Microbiome Data
por: Zhang, Xinyan, et al.
Publicado: (2018) -
Negative binomial mixed models for analyzing longitudinal CD4 count data
por: Yirga, Ashenafi A., et al.
Publicado: (2020)