Cargando…
Predicting COVID-19 cases using bidirectional LSTM on multivariate time series
To assist policymakers in making adequate decisions to stop the spread of the COVID-19 pandemic, accurate forecasting of the disease propagation is of paramount importance. This paper presents a deep learning approach to forecast the cumulative number of COVID-19 cases using bidirectional Long Short...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8155803/ https://www.ncbi.nlm.nih.gov/pubmed/34043172 http://dx.doi.org/10.1007/s11356-021-14286-7 |