Cargando…
ECPC-ICP: A 6D Vehicle Pose Estimation Method by Fusing the Roadside Lidar Point Cloud and Road Feature
In the vehicle pose estimation task based on roadside Lidar in cooperative perception, the measurement distance, angle, and laser resolution directly affect the quality of the target point cloud. For incomplete and sparse point clouds, current methods are either less accurate in correspondences solv...
Autores principales: | Gu, Bo, Liu, Jianxun, Xiong, Huiyuan, Li, Tongtong, Pan, Yuelong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8156169/ https://www.ncbi.nlm.nih.gov/pubmed/34067737 http://dx.doi.org/10.3390/s21103489 |
Ejemplares similares
-
Research on an Adaptive Method for the Angle Calibration of Roadside LiDAR Point Clouds
por: Wen, Xin, et al.
Publicado: (2023) -
LiDAR-Based Non-Cooperative Tumbling Spacecraft Pose Tracking by Fusing Depth Maps and Point Clouds
por: Zhao, Gaopeng, et al.
Publicado: (2018) -
Automatic Roadside Feature Detection Based on Lidar Road Cross Section Images
por: Brkić, Ivan, et al.
Publicado: (2022) -
Vehicle Detection under Adverse Weather from Roadside LiDAR Data
por: Wu, Jianqing, et al.
Publicado: (2020) -
Dual Roadside Seismic Sensor for Moving Road Vehicle Detection and Characterization
por: Wang, Hua, et al.
Publicado: (2014)